您好,登錄后才能下訂單哦!
今天小編給大家分享一下R語言數據可視化實例分析的相關知識點,內容詳細,邏輯清晰,相信大部分人都還太了解這方面的知識,所以分享這篇文章給大家參考一下,希望大家閱讀完這篇文章后有所收獲,下面我們一起來了解一下吧。
library("plyr")
library("dplyr")
library("ggplot2")
library("ggmap")
library("maptools")
library("maps")
library("REmap")
library("Cairo")
library("baidumap")
library(showtext)
################中國地圖######################
china_map<-readShapePoly("c:/rstudy/bou2_4p.shp")
x1 <- china_map@data
xs1 <- data.frame(x1,id=seq(0:924)-1)
china_map1 <- fortify(china_map)
china_map_data <- join(china_map1, xs1, type = "full")
mydata1 <- read.csv("c:/rstudy/geshengzhibiao.csv")
china_data <- join(china_map_data, mydata1, type="full")
####################放射路徑氣泡圖#####################
city_list<-c("西安","西寧","鄭州","重慶","成都","石家莊","蘭州","濟南","大同","咸陽","包頭")
#address<-get_geo_position(city_list)
address<-getCoordinate(city_list, formatted = T)
address<-data.frame(address,city=row.names(address),stringsAsFactors = FALSE)
del<-getCoordinate("長沙", formatted = T)
del<-as.character(del)
lonx<-as.numeric(rep(del[1],11))
laty<-as.numeric(rep(del[2],11))
address<-data.frame(address,lonx,laty)
address$lonx<-as.numeric(address$lonx)
address$laty<-as.numeric(address$laty)
names(address)[1:2]<-c("lon","lat")
address$Num<-round(runif(11,50,100),2)
#----------------------------------------------------------------------------------------------------
font.add("myfont", "msyhl.ttc")
CairoPNG(file="C:/Users/Administrator/Desktop/航線圖1.png",width=1000,height=670)
showtext.begin()
ggplot()+
geom_polygon(data=china_data,aes(x=long,y=lat,group=group),fill="white",size=0.2,colour="#D9D9D9")+
geom_segment(data=address,aes(x=lon,y=lat,xend=lonx,yend=laty),size=0.3,colour="#FF6833")+
geom_point(data=address,aes(x=lon,y=lat,size=Num),shape=21,fill="#ED7D31",col="#E02939",alpha=.6)+
geom_point(data=NULL,aes(x=112.97935,y=28.21347),shape=21,size=8,fill=NA,col="steelblue")+
guides(fill=FALSE)+
coord_map("polyconic")+
scale_size_area(max_size=8)+
theme(
plot.background=element_rect(fill="#D0DEDE", color=NA),
panel.spacing = unit(0,"lines"),
plot.margin=unit(rep(0.2,4),"cm"),
panel.grid = element_blank(),
panel.background = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
axis.title = element_blank(),
#legend.position=c(0.8,0.3),
legend.position="none"
)
showtext.end()
dev.off()
#######################遷徙路徑氣泡圖##################################
city_list<-c("海口","廣州","長沙","武漢","鄭州","石家莊","北京","沈陽","長春","哈爾濱")
addA<-getCoordinate(city_list, formatted = T)
addA<-data.frame(addA,city=row.names(addA),stringsAsFactors = FALSE)
data1<-addA[-1,]
names(data1)[1:2]<-c("lonx","latx")
data2<-addA[-length(row.names(addA)),]
names(data2)[1:2]<-c("lony","laty")
addB<-cbind(data2,data1)[,-3]
addA$Num<-round(runif(10,50,100),2)
names(addA)[1:2]<-c("lon","lat")
#-------------------------------------------------------------------------------------------------------
font.add("myfont", "msyhl.ttc")
CairoPNG(file="C:/Users/Administrator/Desktop/航線圖2.png",width=1000,height=670)
showtext.begin()
ggplot()+
geom_polygon(data=china_data,aes(x=long,y=lat,group=group),fill="white",size=0.2,colour="#D9D9D9")+
geom_segment(data=addB,aes(x=lonx,y=latx,xend=lony,yend=laty),size=0.3,colour="#FF6833")+
geom_point(data=addA,aes(x=lon,y=lat,size=Num),shape=21,fill="#ED7D31",col="#E02939",alpha=.6)+
guides(fill=FALSE)+
coord_map("polyconic")+
scale_size_area(max_size=8)+
theme(
plot.background=element_rect(fill="#D0DEDE", color=NA),
panel.spacing = unit(0,"lines"),
plot.margin=unit(rep(0.2,4),"cm"),
panel.grid = element_blank(),
panel.background = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
axis.title = element_blank(),
#legend.position=c(0.8,0.3),
legend.position="none"
)
showtext.end()
dev.off()
########################閉環路徑氣泡圖################################
city_list3<-c("蘭州","成都","重慶","貴陽","昆明","南寧","海口","廣州","福州","上海","青島","石家莊","呼和浩特","銀川")
addC<-getCoordinate(city_list3, formatted = T)
addC<-data.frame(addC,city=row.names(addC),stringsAsFactors = FALSE)
names(addC)[1:2]<-c("lon","lat")
datac1<-addC[2:14,]
datac2<-addC[1,]
addCC<-rbind(datac1,datac2)
adddata<-cbind(addC,addCC)
names(adddata)<-c("lonx","latx","city","lony","laty","city")
adddata<-adddata[,-3]
addC$Num<-round(runif(14,50,100),2)
#-------------------------------------------------------------------------------------------------------------
CairoPNG(file="C:/Users/Administrator/Desktop/航線圖3.png",width=1000,height=670)
showtext.begin()
ggplot()+
geom_polygon(data=china_data,aes(x=long,y=lat,group=group),fill="white",size=0.2,colour="#D9D9D9")+
geom_segment(data=adddata,aes(x=lonx,y=latx,xend=lony,yend=laty),size=0.3,colour="#FF6833")+
geom_point(data=addC,aes(x=lon,y=lat,size=Num),shape=21,fill="#ED7D31",col="#E02939",alpha=.6)+
guides(fill=FALSE)+
coord_map("polyconic")+
scale_size_area(max_size=8)+
theme(
plot.background=element_rect(fill="#D0DEDE", color=NA),
panel.spacing = unit(0,"lines"),
plot.margin=unit(rep(0.2,4),"cm"),
panel.grid = element_blank(),
panel.background = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
axis.title = element_blank(),
#legend.position=c(0.8,0.3),
legend.position="none"
)
showtext.end()
dev.off()
#-------------------------------------------方形氣泡圖---------------------------------------------------
CairoPNG(file="C:/Users/Administrator/Desktop/航線圖4.png",width=1000,height=670)
showtext.begin()
ggplot()+
geom_polygon(data=china_data,aes(x=long,y=lat,group=group),fill="white",size=0.2,colour="#D9D9D9")+
geom_point(data=address,aes(x=lon,y=lat,size=Num,fill=Num),shape=22,col="#E02939",alpha=.6)+
guides(fill=FALSE)+
scale_fill_gradient2(low="#8E0F2E", mid="#BFBEBE", high="#0E4E75", midpoint=median(na.omit(address$Num)))+
coord_map("polyconic")+
scale_size_area(max_size=8)+
theme(
plot.background=element_rect(fill="#D0DEDE", color=NA),
panel.spacing = unit(0,"lines"),
plot.margin=unit(rep(0.2,4),"cm"),
panel.grid = element_blank(),
panel.background = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
axis.title = element_blank(),
#legend.position=c(0.8,0.3),
legend.position="none"
)
showtext.end()
dev.off()
#-----------------------------------------------菱形氣泡圖-----------------------------------------------------
CairoPNG(file="C:/Users/Administrator/Desktop/航線圖5.png",width=1000,height=670)
showtext.begin()
ggplot()+
geom_polygon(data=china_data,aes(x=long,y=lat,group=group),fill="white",size=0.2,colour="#D9D9D9")+
geom_point(data=address,aes(x=lon,y=lat,size=Num,fill=Num),shape=23,col="#E02939",alpha=.6)+
guides(fill=FALSE)+
scale_fill_gradient2(low="#8E0F2E", mid="#BFBEBE", high="#0E4E75", midpoint=median(na.omit(address$Num)))+
coord_map("polyconic")+
scale_size_area(max_size=8)+
theme(
plot.background=element_rect(fill="#D0DEDE", color=NA),
panel.spacing = unit(0,"lines"),
plot.margin=unit(rep(0.2,4),"cm"),
panel.grid = element_blank(),
panel.background = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
axis.title = element_blank(),
#legend.position=c(0.8,0.3),
legend.position="none"
)
showtext.end()
dev.off()
以上所有圖表的指標數據均為隨機數虛構,圖表的圖形代碼使用showtext和Cario進行高清渲染并自動輸出,除了需加載的地圖素材之外,其他代碼均可一次性放在控制臺流暢運行。
以上就是“R語言數據可視化實例分析”這篇文章的所有內容,感謝各位的閱讀!相信大家閱讀完這篇文章都有很大的收獲,小編每天都會為大家更新不同的知識,如果還想學習更多的知識,請關注億速云行業資訊頻道。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。