您好,登錄后才能下訂單哦!
本文小編為大家詳細介紹“R語言記錄數據可視化實例分析”,內容詳細,步驟清晰,細節處理妥當,希望這篇“R語言記錄數據可視化實例分析”文章能幫助大家解決疑惑,下面跟著小編的思路慢慢深入,一起來學習新知識吧。
library(ggplot2)
library(maps)
library(plyr)
library(grid)
library(RColorBrewer)
library("dplyr")
library(gapminder)
library(gganimate)
library(animation)
此次使用的地圖是maps中的世界地圖,因為原始數據是gapminder包(沒錯就是那個做動態可視化很吊的團隊,他們有個網站就叫gapminder,里面各種高大上動態圖,而且還提供了動態圖演示的桌面端軟件)提供的數據。因為國家名稱有出入,我自己又整理了一份對照表。
world_map<-map_data("world")
world_map[world_map$group==1425&world_map$group==1425,"region"]<-"Trinidad and Tobago"
setwd("D:/")
Country<-read.csv("mydata.csv",stringsAsFactors = FALSE,check.names = FALSE)
mapdata<-left_join(gapminder,Country)%>%na.omit()
mapdata$fan<-cut(mapdata$gdpPercap,breaks=c(min(mapdata$gdpPercap),2500,5000,7500,10000,15000,20000,30000,40000,max(mapdata$gdpPercap)),
labels=c("<=2500","2500~5000","5000~7500","7500~10000","10000~1500","1500~20000","20000~30000","30000~40000"," >=40000"),include.lowest=TRUE,order=TRUE)
mapnew_data<-left_join(world_map[,-6],mapdata[,-1],by="region")
使用colorbrewer提供的色盤:
color1<-brewer.pal(9,"YlOrRd")[c(3,4,5,6,7,8,9)]
color2<-brewer.pal(9,"Greens")[c(4,6)]
color<-c(rev(color2),color1)
定制一款主題:
mytheme<-theme(
panel.grid = element_blank(),
panel.background = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank(),
axis.title = element_blank(),
legend.position ="none",
plot.background=element_rect(I(0),linetype=0)
)
分段填色熱力圖:(gganimate版)
p1<-ggplot(data=mapnew_data,aes(x=long,y=lat,group=group,fill=fan,frame=year))+
geom_polygon(colour="grey",size=.2)+
guides(fill=guide_legend(reverse=TRUE))+
scale_fill_manual(values=color,na.value="grey95")+
mytheme
gganimate(p1,interval = .5,"output.gif")
分段填色(animation版)
year<-unique(gapminder$year)
saveGIF({
for (i in year) {
title <- as.character(i)
g1<-ggplot()+
geom_polygon(data=world_map,aes(x=long,y=lat,group=group),fill="white",colour="grey",size=.2)+
geom_polygon(data=filter(mapnew_data,year==i),aes(x=long,y=lat,group=group,fill=fan),colour="grey",size=.2)+
guides(fill=guide_legend(reverse=TRUE))+
scale_fill_manual(values=color,na.value="grey95")+
mytheme
print(g1)
}
},movie.name='world_population_Area.gif',interval=0.2,ani.width=1200,ani.height=750)
制作散點坐標數據:
midpos <- function(AD1){mean(range(AD1,na.rm=TRUE))}
centres <- ddply(mapnew_data,.(region),colwise(midpos,.(long,lat)))
pointdata<-left_join(mapdata[,c(3,5,7)],centres)
帶填色散點圖(gganimate版)
p2<-ggplot(data=pointdata,aes(x=long,y=lat,frame=year))+
geom_polygon(data=mapnew_data,aes(x=long,y=lat,group=group),colour="grey",size=.2,fill="white")+
geom_point(aes(size=pop,fill=pop),shape=21,colour="black")+
scale_fill_gradient(low="white",high="#D73434")+
scale_size_area(max_size=18)+
mytheme
gganimate(p2,interval = .5,"output2.gif")
帶填色散點圖(animation版)
year<-unique(gapminder$year)
saveGIF({
for (i in year) {
title <- as.character(i) g1<-ggplot()+
geom_polygon(data=world_map,aes(x=long,y=lat,group=group),colour="grey",size=.2,fill="white")+
geom_point(data=filter(pointdata,year==i),aes(x=long,y=lat,size=pop,fill=pop),shape=21,colour="black")+
scale_fill_gradient(low="white",high="#D73434")+
labs(title=paste0("Population structure of World:",title),caption="Data Source:GapMinder") +
scale_size_area(max_size=18)+
guides(fill=guide_legend(reverse=TRUE))+
mytheme
print(g1)
}
},movie.name='world_population.gif',interval=0.2,ani.width=1200,ani.height=750)
雖然說gganimate包制作的動態圖效果不是很好調整,但是它整合了一些非常棒的功能,大大簡化了動態圖制作,他也可以制作累計動態圖(隨著年份增加,在保留過去效果的基礎上,增加最新事件內的效果),他不僅可以將時間變量作為切換維度,甚至不限制維度變量性質,即分類資料也是可以支持切換。
案例在ggplot2的擴展包社區里,你也可以在它的GitHub主頁上找到相關介紹:
讀到這里,這篇“R語言記錄數據可視化實例分析”文章已經介紹完畢,想要掌握這篇文章的知識點還需要大家自己動手實踐使用過才能領會,如果想了解更多相關內容的文章,歡迎關注億速云行業資訊頻道。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。