91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

探索Redis設計與實現6:Redis內部數據結構詳解——skiplist

發布時間:2020-08-09 13:38:28 來源:ITPUB博客 閱讀:176 作者:Java技術江湖 欄目:關系型數據庫

本文轉自互聯網

本系列文章將整理到我在GitHub上的《Java面試指南》倉庫,更多精彩內容請到我的倉庫里查看

https://github.com/h3pl/Java-Tutorial

喜歡的話麻煩點下Star哈

文章首發于我的個人博客:

www.how2playlife.com

本文是微信公眾號【Java技術江湖】的《探索Redis設計與實現》其中一篇,本文部分內容來源于網絡,為了把本文主題講得清晰透徹,也整合了很多我認為不錯的技術博客內容,引用其中了一些比較好的博客文章,如有侵權,請聯系作者。

該系列博文會告訴你如何從入門到進階,Redis基本的使用方法,Redis的基本數據結構,以及一些進階的使用方法,同時也需要進一步了解Redis的底層數據結構,再接著,還會帶來Redis主從復制、集群、分布式鎖等方面的相關內容,以及作為緩存的一些使用方法和注意事項,以便讓你更完整地了解整個Redis相關的技術體系,形成自己的知識框架。

如果對本系列文章有什么建議,或者是有什么疑問的話,也可以關注公眾號【Java技術江湖】聯系作者,歡迎你參與本系列博文的創作和修訂。

本文是《 Redis內部數據結構詳解》系列的第六篇。在本文中,我們圍繞一個Redis的內部數據結構——skiplist展開討論。

Redis里面使用skiplist是為了實現sorted set這種對外的數據結構。sorted set提供的操作非常豐富,可以滿足非常多的應用場景。這也意味著,sorted set相對來說實現比較復雜。同時,skiplist這種數據結構對于很多人來說都比較陌生,因為大部分學校里的算法課都沒有對這種數據結構進行過詳細的介紹。因此,為了介紹得足夠清楚,本文會比這個系列的其它幾篇花費更多的篇幅。

我們將大體分成三個部分進行介紹:

  1. 介紹經典的skiplist數據結構,并進行簡單的算法分析。這一部分的介紹,與Redis沒有直接關系。我會嘗試盡量使用通俗易懂的語言進行描述。
  2. 討論Redis里的skiplist的具體實現。為了支持sorted set本身的一些要求,在經典的skiplist基礎上,Redis里的相應實現做了若干改動。
  3. 討論sorted set是如何在skiplist, dict和ziplist基礎上構建起來的。

我們在討論中還會涉及到兩個Redis配置(在redis.conf中的ADVANCED CONFIG部分):

zset-max-ziplist-entries 128
zset-max-ziplist-value 64

我們在討論中會詳細解釋這兩個配置的含義。

注:本文討論的代碼實現基于Redis源碼的3.2分支。

skiplist數據結構簡介

skiplist本質上也是一種查找結構,用于解決算法中的查找問題(Searching),即根據給定的key,快速查到它所在的位置(或者對應的value)。

我們在《Redis內部數據結構詳解》系列的 第一篇中介紹dict的時候,曾經討論過:一般查找問題的解法分為兩個大類:一個是基于各種平衡樹,一個是基于哈希表。但skiplist卻比較特殊,它沒法歸屬到這兩大類里面。

這種數據結構是由 William Pugh發明的,最早出現于他在1990年發表的論文《 Skip Lists: A Probabilistic Alternative to Balanced Trees》。對細節感興趣的同學可以下載論文原文來閱讀。

skiplist,顧名思義,首先它是一個list。實際上,它是在有序鏈表的基礎上發展起來的。

我們先來看一個有序鏈表,如下圖(最左側的灰色節點表示一個空的頭結點):

探索Redis設計與實現6:Redis內部數據結構詳解——skiplist

在這樣一個鏈表中,如果我們要查找某個數據,那么需要從頭開始逐個進行比較,直到找到包含數據的那個節點,或者找到第一個比給定數據大的節點為止(沒找到)。也就是說,時間復雜度為O(n)。同樣,當我們要插入新數據的時候,也要經歷同樣的查找過程,從而確定插入位置。

假如我們每相鄰兩個節點增加一個指針,讓指針指向下下個節點,如下圖:

探索Redis設計與實現6:Redis內部數據結構詳解——skiplist

這樣所有新增加的指針連成了一個新的鏈表,但它包含的節點個數只有原來的一半(上圖中是7, 19, 26)。現在當我們想查找數據的時候,可以先沿著這個新鏈表進行查找。當碰到比待查數據大的節點時,再回到原來的鏈表中進行查找。比如,我們想查找23,查找的路徑是沿著下圖中標紅的指針所指向的方向進行的:

探索Redis設計與實現6:Redis內部數據結構詳解——skiplist

  • 23首先和7比較,再和19比較,比它們都大,繼續向后比較。
  • 但23和26比較的時候,比26要小,因此回到下面的鏈表(原鏈表),與22比較。
  • 23比22要大,沿下面的指針繼續向后和26比較。23比26小,說明待查數據23在原鏈表中不存在,而且它的插入位置應該在22和26之間。

在這個查找過程中,由于新增加的指針,我們不再需要與鏈表中每個節點逐個進行比較了。需要比較的節點數大概只有原來的一半。

利用同樣的方式,我們可以在上層新產生的鏈表上,繼續為每相鄰的兩個節點增加一個指針,從而產生第三層鏈表。如下圖:

探索Redis設計與實現6:Redis內部數據結構詳解——skiplist

在這個新的三層鏈表結構上,如果我們還是查找23,那么沿著最上層鏈表首先要比較的是19,發現23比19大,接下來我們就知道只需要到19的后面去繼續查找,從而一下子跳過了19前面的所有節點。可以想象,當鏈表足夠長的時候,這種多層鏈表的查找方式能讓我們跳過很多下層節點,大大加快查找的速度。

skiplist正是受這種多層鏈表的想法的啟發而設計出來的。實際上,按照上面生成鏈表的方式,上面每一層鏈表的節點個數,是下面一層的節點個數的一半,這樣查找過程就非常類似于一個二分查找,使得查找的時間復雜度可以降低到O(log n)。但是,這種方法在插入數據的時候有很大的問題。新插入一個節點之后,就會打亂上下相鄰兩層鏈表上節點個數嚴格的2:1的對應關系。如果要維持這種對應關系,就必須把新插入的節點后面的所有節點(也包括新插入的節點)重新進行調整,這會讓時間復雜度重新蛻化成O(n)。刪除數據也有同樣的問題。

skiplist為了避免這一問題,它不要求上下相鄰兩層鏈表之間的節點個數有嚴格的對應關系,而是為每個節點隨機出一個層數(level)。比如,一個節點隨機出的層數是3,那么就把它鏈入到第1層到第3層這三層鏈表中。為了表達清楚,下圖展示了如何通過一步步的插入操作從而形成一個skiplist的過程:

探索Redis設計與實現6:Redis內部數據結構詳解——skiplist

從上面skiplist的創建和插入過程可以看出,每一個節點的層數(level)是隨機出來的,而且新插入一個節點不會影響其它節點的層數。因此,插入操作只需要修改插入節點前后的指針,而不需要對很多節點都進行調整。這就降低了插入操作的復雜度。實際上,這是skiplist的一個很重要的特性,這讓它在插入性能上明顯優于平衡樹的方案。這在后面我們還會提到。

根據上圖中的skiplist結構,我們很容易理解這種數據結構的名字的由來。skiplist,翻譯成中文,可以翻譯成“跳表”或“跳躍表”,指的就是除了最下面第1層鏈表之外,它會產生若干層稀疏的鏈表,這些鏈表里面的指針故意跳過了一些節點(而且越高層的鏈表跳過的節點越多)。這就使得我們在查找數據的時候能夠先在高層的鏈表中進行查找,然后逐層降低,最終降到第1層鏈表來精確地確定數據位置。在這個過程中,我們跳過了一些節點,從而也就加快了查找速度。

剛剛創建的這個skiplist總共包含4層鏈表,現在假設我們在它里面依然查找23,下圖給出了查找路徑:

探索Redis設計與實現6:Redis內部數據結構詳解——skiplist

需要注意的是,前面演示的各個節點的插入過程,實際上在插入之前也要先經歷一個類似的查找過程,在確定插入位置后,再完成插入操作。

至此,skiplist的查找和插入操作,我們已經很清楚了。而刪除操作與插入操作類似,我們也很容易想象出來。這些操作我們也應該能很容易地用代碼實現出來。

當然,實際應用中的skiplist每個節點應該包含key和value兩部分。前面的描述中我們沒有具體區分key和value,但實際上列表中是按照key進行排序的,查找過程也是根據key在比較。

但是,如果你是第一次接觸skiplist,那么一定會產生一個疑問:節點插入時隨機出一個層數,僅僅依靠這樣一個簡單的隨機數操作而構建出來的多層鏈表結構,能保證它有一個良好的查找性能嗎?為了回答這個疑問,我們需要分析skiplist的統計性能。

在分析之前,我們還需要著重指出的是,執行插入操作時計算隨機數的過程,是一個很關鍵的過程,它對skiplist的統計特性有著很重要的影響。這并不是一個普通的服從均勻分布的隨機數,它的計算過程如下:

  • 首先,每個節點肯定都有第1層指針(每個節點都在第1層鏈表里)。
  • 如果一個節點有第i層(i>=1)指針(即節點已經在第1層到第i層鏈表中),那么它有第(i+1)層指針的概率為p。
  • 節點最大的層數不允許超過一個最大值,記為MaxLevel。

這個計算隨機層數的偽碼如下所示:

randomLevel()
    level := 1
    // random()返回一個[0...1)的隨機數
    while random() < p and level < MaxLevel do
        level := level + 1
    return level

randomLevel()的偽碼中包含兩個參數,一個是p,一個是MaxLevel。在Redis的skiplist實現中,這兩個參數的取值為:

p = 1/4
MaxLevel = 32

skiplist的算法性能分析

在這一部分,我們來簡單分析一下skiplist的時間復雜度和空間復雜度,以便對于skiplist的性能有一個直觀的了解。如果你不是特別偏執于算法的性能分析,那么可以暫時跳過這一小節的內容。

我們先來計算一下每個節點所包含的平均指針數目(概率期望)。節點包含的指針數目,相當于這個算法在空間上的額外開銷(overhead),可以用來度量空間復雜度。

根據前面randomLevel()的偽碼,我們很容易看出,產生越高的節點層數,概率越低。定量的分析如下:

  • 節點層數至少為1。而大于1的節點層數,滿足一個概率分布。
  • 節點層數恰好等于1的概率為1-p。
  • 節點層數大于等于2的概率為p,而節點層數恰好等于2的概率為p(1-p)。
  • 節點層數大于等于3的概率為p 2,而節點層數恰好等于3的概率為p 2(1-p)。
  • 節點層數大于等于4的概率為p 3,而節點層數恰好等于4的概率為p 3(1-p)。
  • ……

因此,一個節點的平均層數(也即包含的平均指針數目),計算如下:

探索Redis設計與實現6:Redis內部數據結構詳解——skiplist

現在很容易計算出:

  • 當p=1/2時,每個節點所包含的平均指針數目為2;
  • 當p=1/4時,每個節點所包含的平均指針數目為1.33。這也是Redis里的skiplist實現在空間上的開銷。

接下來,為了分析時間復雜度,我們計算一下skiplist的平均查找長度。查找長度指的是查找路徑上跨越的跳數,而查找過程中的比較次數就等于查找長度加1。以前面圖中標出的查找23的查找路徑為例,從左上角的頭結點開始,一直到結點22,查找長度為6。

為了計算查找長度,這里我們需要利用一點小技巧。我們注意到,每個節點插入的時候,它的層數是由隨機函數randomLevel()計算出來的,而且隨機的計算不依賴于其它節點,每次插入過程都是完全獨立的。所以,從統計上來說,一個skiplist結構的形成與節點的插入順序無關。

這樣的話,為了計算查找長度,我們可以將查找過程倒過來看,從右下方第1層上最后到達的那個節點開始,沿著查找路徑向左向上回溯,類似于爬樓梯的過程。我們假設當回溯到某個節點的時候,它才被插入,這雖然相當于改變了節點的插入順序,但從統計上不影響整個skiplist的形成結構。

現在假設我們從一個層數為i的節點x出發,需要向左向上攀爬k層。這時我們有兩種可能:

  • 如果節點x有第(i+1)層指針,那么我們需要向上走。這種情況概率為p。
  • 如果節點x沒有第(i+1)層指針,那么我們需要向左走。這種情況概率為(1-p)。

這兩種情形如下圖所示:

探索Redis設計與實現6:Redis內部數據結構詳解——skiplist

用C(k)表示向上攀爬k個層級所需要走過的平均查找路徑長度(概率期望),那么:

C(0)=0
C(k)=(1-p)×(上圖中情況b的查找長度) + p×(上圖中情況c的查找長度)

代入,得到一個差分方程并化簡:

C(k)=(1-p)(C(k)+1) + p(C(k-1)+1)
C(k)=1/p+C(k-1)
C(k)=k/p

這個結果的意思是,我們每爬升1個層級,需要在查找路徑上走1/p步。而我們總共需要攀爬的層級數等于整個skiplist的總層數-1。

那么接下來我們需要分析一下當skiplist中有n個節點的時候,它的總層數的概率均值是多少。這個問題直觀上比較好理解。根據節點的層數隨機算法,容易得出:

  • 第1層鏈表固定有n個節點;
  • 第2層鏈表平均有n*p個節點;
  • 第3層鏈表平均有n*p 2個節點;

所以,從第1層到最高層,各層鏈表的平均節點數是一個指數遞減的等比數列。容易推算出,總層數的均值為log 1/pn,而最高層的平均節點數為1/p。

綜上,粗略來計算的話,平均查找長度約等于:

  • C(log 1/pn-1)=(log 1/pn-1)/p

即,平均時間復雜度為O(log n)。

當然,這里的時間復雜度分析還是比較粗略的。比如,沿著查找路徑向左向上回溯的時候,可能先到達左側頭結點,然后沿頭結點一路向上;還可能先到達最高層的節點,然后沿著最高層鏈表一路向左。但這些細節不影響平均時間復雜度的最后結果。另外,這里給出的時間復雜度只是一個概率平均值,但實際上計算一個精細的概率分布也是有可能的。詳情還請參見 William Pugh的論文《 Skip Lists: A Probabilistic Alternative to Balanced Trees》。

skiplist與平衡樹、哈希表的比較

  • skiplist和各種平衡樹(如AVL、紅黑樹等)的元素是有序排列的,而哈希表不是有序的。因此,在哈希表上只能做單個key的查找,不適宜做范圍查找。所謂范圍查找,指的是查找那些大小在指定的兩個值之間的所有節點。
  • 在做范圍查找的時候,平衡樹比skiplist操作要復雜。在平衡樹上,我們找到指定范圍的小值之后,還需要以中序遍歷的順序繼續尋找其它不超過大值的節點。如果不對平衡樹進行一定的改造,這里的中序遍歷并不容易實現。而在skiplist上進行范圍查找就非常簡單,只需要在找到小值之后,對第1層鏈表進行若干步的遍歷就可以實現。
  • 平衡樹的插入和刪除操作可能引發子樹的調整,邏輯復雜,而skiplist的插入和刪除只需要修改相鄰節點的指針,操作簡單又快速。
  • 從內存占用上來說,skiplist比平衡樹更靈活一些。一般來說,平衡樹每個節點包含2個指針(分別指向左右子樹),而skiplist每個節點包含的指針數目平均為1/(1-p),具體取決于參數p的大小。如果像Redis里的實現一樣,取p=1/4,那么平均每個節點包含1.33個指針,比平衡樹更有優勢。
  • 查找單個key,skiplist和平衡樹的時間復雜度都為O(log n),大體相當;而哈希表在保持較低的哈希值沖突概率的前提下,查找時間復雜度接近O(1),性能更高一些。所以我們平常使用的各種Map或dictionary結構,大都是基于哈希表實現的。
  • 從算法實現難度上來比較,skiplist比平衡樹要簡單得多。

Redis中的skiplist實現

在這一部分,我們討論Redis中的skiplist實現。

在Redis中,skiplist被用于實現暴露給外部的一個數據結構:sorted set。準確地說,sorted set底層不僅僅使用了skiplist,還使用了ziplist和dict。這幾個數據結構的關系,我們下一章再討論。現在,我們先花點時間把sorted set的關鍵命令看一下。這些命令對于Redis里skiplist的實現,有重要的影響。

sorted set的命令舉例

sorted set是一個有序的數據集合,對于像類似排行榜這樣的應用場景特別適合。

現在我們來看一個例子,用sorted set來存儲代數課(algebra)的成績表。原始數據如下:

  • Alice 87.5
  • Bob 89.0
  • Charles 65.5
  • David 78.0
  • Emily 93.5
  • Fred 87.5

這份數據給出了每位同學的名字和分數。下面我們將這份數據存儲到sorted set里面去:

探索Redis設計與實現6:Redis內部數據結構詳解——skiplist

對于上面的這些命令,我們需要的注意的地方包括:

  • 前面的6個zadd命令,將6位同學的名字和分數(score)都輸入到一個key值為algebra的sorted set里面了。注意Alice和Fred的分數相同,都是87.5分。
  • zrevrank命令查詢Alice的排名(命令中的rev表示按照倒序排列,也就是從大到小),返回3。排在Alice前面的分別是Emily、Bob、Fred,而排名(rank)從0開始計數,所以Alice的排名是3。注意,其實Alice和Fred的分數相同,這種情況下sorted set會把分數相同的元素,按照字典順序來排列。按照倒序,Fred排在了Alice的前面。
  • zscore命令查詢了Charles對應的分數。
  • zrevrange命令查詢了從大到小排名為0~3的4位同學。
  • zrevrangebyscore命令查詢了分數在80.0和90.0之間的所有同學,并按分數從大到小排列。

總結一下,sorted set中的每個元素主要表現出3個屬性:

  • 數據本身(在前面的例子中我們把名字存成了數據)。
  • 每個數據對應一個分數(score)。
  • 根據分數大小和數據本身的字典排序,每個數據會產生一個排名(rank)。可以按正序或倒序。
Redis中skiplist實現的特殊性

我們簡單分析一下前面出現的幾個查詢命令:

  • zrevrank由數據查詢它對應的排名,這在前面介紹的skiplist中并不支持。
  • zscore由數據查詢它對應的分數,這也不是skiplist所支持的。
  • zrevrange根據一個排名范圍,查詢排名在這個范圍內的數據。這在前面介紹的skiplist中也不支持。
  • zrevrangebyscore根據分數區間查詢數據集合,是一個skiplist所支持的典型的范圍查找(score相當于key)。

實際上,Redis中sorted set的實現是這樣的:

  • 當數據較少時,sorted set是由一個ziplist來實現的。
  • 當數據多的時候,sorted set是由一個dict + 一個skiplist來實現的。簡單來講,dict用來查詢數據到分數的對應關系,而skiplist用來根據分數查詢數據(可能是范圍查找)。

這里sorted set的構成我們在下一章還會再詳細地討論。現在我們集中精力來看一下sorted set與skiplist的關系,:

  • zscore的查詢,不是由skiplist來提供的,而是由那個dict來提供的。
  • 為了支持排名(rank),Redis里對skiplist做了擴展,使得根據排名能夠快速查到數據,或者根據分數查到數據之后,也同時很容易獲得排名。而且,根據排名的查找,時間復雜度也為O(log n)。
  • zrevrange的查詢,是根據排名查數據,由擴展后的skiplist來提供。
  • zrevrank是先在dict中由數據查到分數,再拿分數到skiplist中去查找,查到后也同時獲得了排名。

前述的查詢過程,也暗示了各個操作的時間復雜度:

  • zscore只用查詢一個dict,所以時間復雜度為O(1)
  • zrevrank, zrevrange, zrevrangebyscore由于要查詢skiplist,所以zrevrank的時間復雜度為O(log n),而zrevrange, zrevrangebyscore的時間復雜度為O(log(n)+M),其中M是當前查詢返回的元素個數。

總結起來,Redis中的skiplist跟前面介紹的經典的skiplist相比,有如下不同:

  • 分數(score)允許重復,即skiplist的key允許重復。這在最開始介紹的經典skiplist中是不允許的。
  • 在比較時,不僅比較分數(相當于skiplist的key),還比較數據本身。在Redis的skiplist實現中,數據本身的內容唯一標識這份數據,而不是由key來唯一標識。另外,當多個元素分數相同的時候,還需要根據數據內容來進字典排序。
  • 第1層鏈表不是一個單向鏈表,而是一個雙向鏈表。這是為了方便以倒序方式獲取一個范圍內的元素。
  • 在skiplist中可以很方便地計算出每個元素的排名(rank)。
skiplist的數據結構定義
#define ZSKIPLIST_MAXLEVEL 32
#define ZSKIPLIST_P 0.25
typedef struct zskiplistNode {
    robj *obj;
    double score;
    struct zskiplistNode *backward;
    struct zskiplistLevel {
        struct zskiplistNode *forward;
        unsigned int span;
    } level[];
} zskiplistNode;
typedef struct zskiplist {
    struct zskiplistNode *header, *tail;
    unsigned long length;
    int level;
} zskiplist;

這段代碼出自server.h,我們來簡要分析一下:

  • 開頭定義了兩個常量,ZSKIPLIST_MAXLEVEL和ZSKIPLIST_P,分別對應我們前面講到的skiplist的兩個參數:一個是MaxLevel,一個是p。
  • zskiplistNode定義了skiplist的節點結構。
    • obj字段存放的是節點數據,它的類型是一個string robj。本來一個string robj可能存放的不是sds,而是long型,但zadd命令在將數據插入到skiplist里面之前先進行了解碼,所以這里的obj字段里存儲的一定是一個sds。有關robj的詳情可以參見系列文章的第三篇:《 Redis內部數據結構詳解(3)——robj》。這樣做的目的應該是為了方便在查找的時候對數據進行字典序的比較,而且,skiplist里的數據部分是數字的可能性也比較小。
    • score字段是數據對應的分數。
    • backward字段是指向鏈表前一個節點的指針(前向指針)。節點只有1個前向指針,所以只有第1層鏈表是一個雙向鏈表。
    • level[]存放指向各層鏈表后一個節點的指針(后向指針)。每層對應1個后向指針,用forward字段表示。另外,每個后向指針還對應了一個span值,它表示當前的指針跨越了多少個節點。span用于計算元素排名(rank),這正是前面我們提到的Redis對于skiplist所做的一個擴展。需要注意的是,level[]是一個柔性數組( flexible array member),因此它占用的內存不在zskiplistNode結構里面,而需要插入節點的時候單獨為它分配。也正因為如此,skiplist的每個節點所包含的指針數目才是不固定的,我們前面分析過的結論——skiplist每個節點包含的指針數目平均為1/(1-p)——才能有意義。
  • zskiplist定義了真正的skiplist結構,它包含:
    • 頭指針header和尾指針tail。
    • 鏈表長度length,即鏈表包含的節點總數。注意,新創建的skiplist包含一個空的頭指針,這個頭指針不包含在length計數中。
    • level表示skiplist的總層數,即所有節點層數的最大值。

下圖以前面插入的代數課成績表為例,展示了Redis中一個skiplist的可能結構:

探索Redis設計與實現6:Redis內部數據結構詳解——skiplist

注意:圖中前向指針上面括號中的數字,表示對應的span的值。即當前指針跨越了多少個節點,這個計數不包括指針的起點節點,但包括指針的終點節點。

假設我們在這個skiplist中查找score=89.0的元素(即Bob的成績數據),在查找路徑中,我們會跨域圖中標紅的指針,這些指針上面的span值累加起來,就得到了Bob的排名(2+2+1)-1=4(減1是因為rank值以0起始)。需要注意這里算的是從小到大的排名,而如果要算從大到小的排名,只需要用skiplist長度減去查找路徑上的span累加值,即6-(2+2+1)=1。

可見,在查找skiplist的過程中,通過累加span值的方式,我們就能很容易算出排名。相反,如果指定排名來查找數據(類似zrange和zrevrange那樣),也可以不斷累加span并時刻保持累加值不超過指定的排名,通過這種方式就能得到一條O(log n)的查找路徑。

Redis中的sorted set

我們前面提到過,Redis中的sorted set,是在skiplist, dict和ziplist基礎上構建起來的:

  • 當數據較少時,sorted set是由一個ziplist來實現的。
  • 當數據多的時候,sorted set是由一個叫zset的數據結構來實現的,這個zset包含一個dict + 一個skiplist。dict用來查詢數據到分數(score)的對應關系,而skiplist用來根據分數查詢數據(可能是范圍查找)。

在這里我們先來討論一下前一種情況——基于ziplist實現的sorted set。在本系列前面 關于ziplist的文章里,我們介紹過,ziplist就是由很多數據項組成的一大塊連續內存。由于sorted set的每一項元素都由數據和score組成,因此,當使用zadd命令插入一個(數據, score)對的時候,底層在相應的ziplist上就插入兩個數據項:數據在前,score在后。

ziplist的主要優點是節省內存,但它上面的查找操作只能按順序查找(可以正序也可以倒序)。因此,sorted set的各個查詢操作,就是在ziplist上從前向后(或從后向前)一步步查找,每一步前進兩個數據項,跨域一個(數據, score)對。

隨著數據的插入,sorted set底層的這個ziplist就可能會轉成zset的實現(轉換過程詳見t_zset.c的zsetConvert)。那么到底插入多少才會轉呢?

還記得本文開頭提到的兩個Redis配置嗎?

zset-max-ziplist-entries 128
zset-max-ziplist-value 64

這個配置的意思是說,在如下兩個條件之一滿足的時候,ziplist會轉成zset(具體的觸發條件參見t_zset.c中的zaddGenericCommand相關代碼):

  • 當sorted set中的元素個數,即(數據, score)對的數目超過128的時候,也就是ziplist數據項超過256的時候。
  • 當sorted set中插入的任意一個數據的長度超過了64的時候。

最后,zset結構的代碼定義如下:

typedef struct zset {
    dict *dict;
    zskiplist *zsl;
} zset;

Redis為什么用skiplist而不用平衡樹?

在前面我們對于skiplist和平衡樹、哈希表的比較中,其實已經不難看出Redis里使用skiplist而不用平衡樹的原因了。現在我們看看,對于這個問題,Redis的作者 @antirez 是怎么說的:

There are a few reasons:

1) They are not very memory intensive. It’s up to you basically. Changing parameters about the probability of a node to have a given number of levels will make then less memory intensive than btrees.

2) A sorted set is often target of many ZRANGE or ZREVRANGE operations, that is, traversing the skip list as a linked list. With this operation the cache locality of skip lists is at least as good as with other kind of balanced trees.

3) They are simpler to implement, debug, and so forth. For instance thanks to the skip list simplicity I received a patch (already in Redis master) with augmented skip lists implementing ZRANK in O(log(N)). It required little changes to the code.

這段話原文出處:

https://news.ycombinator.com/item?id=1171423

這里從內存占用、對范圍查找的支持和實現難易程度這三方面總結的原因,我們在前面其實也都涉及到了。


系列下一篇我們將介紹intset,以及它與Redis對外暴露的數據類型set的關系,敬請期待。

(完)

原創文章,轉載請注明出處,并包含下面的二維碼!否則拒絕轉載!
本文鏈接: http://zhangtielei.com/posts/blog-redis-skiplist.html

探索Redis設計與實現6:Redis內部數據結構詳解——skiplist

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

阜阳市| 黄骅市| 宝山区| 诏安县| 正宁县| 巴楚县| 林周县| 临夏市| 锡林浩特市| 隆回县| 雷波县| 开鲁县| 荣成市| 贵港市| 方正县| 墨竹工卡县| 德令哈市| 荔波县| 东莞市| 蒙阴县| 东港市| 府谷县| 洪雅县| 融水| 清原| 承德县| 迁西县| 巧家县| 贵定县| 嵊州市| 乌兰察布市| 石景山区| 江陵县| 龙井市| 中超| 台南县| 肥东县| 襄垣县| 当涂县| 泗阳县| 七台河市|