您好,登錄后才能下訂單哦!
1. Series相當于數組numpy.array類似
s1=pd.Series([1,2,4,6,7,2]) s2=pd.Series([4,3,1,57,8],index=['a','b','c','d','e']) print s2 obj1=s2.values # print obj1 obj2=s2.index # print obj2 # print s2[s2>4] # print s2['b']
1.Series 它是有索引,如果我們未指定索引,則是以數字自動生成。
下面是一些例子:
obj=Series([4,7,-5,3]) print obj #輸出結果如下: # 0 4 # 1 7 # 2 -5 # 3 3 print obj.values #取出它的值 #[ 4 7 -5 3] print obj.index #取出索引值 #輸出結果如下: # RangeIndex(start=0, stop=4, step=1) obj2=Series([4,7,-5,3],index=['d','b','a','c']) print obj2 #輸出結果如下: # d 4 # b 7 # a -5 # c 3 #可以通過索引的方式選擇Series中的單個或一組值 print obj2['a'] #輸出結果:-5 print obj2['d'] #輸出結是:4
2. Series的一些操作
Series.order()進行排序,而DataFrame則用sort或者sort_index
print ratings_by_title.order(ascending=False)[:10]
(1)Numpy數組運算(根據布爾型數組進行過濾、標量乘法、應用數學函數等)都會保留索引和值之間的鏈接
print obj2[obj2>0] #取出>0的值 #輸出結果如下: # d 4 # b 7 # c 3 print obj2*2 #輸出結果如下: # d 8 # b 14 # a -10 # c 6
(2)還可以將Series看成是一個定長的有序字典,因為它是索引值到數據值的一個映射。它可以用在許多原來需要字典參數的函數中。
print 'b' in obj2 #obj2中有索引'b'?若有就返回'True'
(3)如果數據被存在一個python字典中,也可以直接通過這個字典來創建Series.
sdata={'Ohio':35000,'Texax':71000,'Oregon':16000,'Utah':5000} obj3=Series(sdata) print obj3 #輸出結果如下: # Ohio 35000 # Oregon 16000 # Texax 71000 # Utah 5000 #注:如果只傳入一個字典,則結果Series中的索引就是原字典的鍵(有序排列) states=['California','Ohio','Oregon','Texax'] obj4=Series(sdata,index=states) #將sdata字典創建Series,索引用states來創建 print obj4 #California在sdata中沒有相應的值,故是NaN缺省值 # California NaN # Ohio 35000.0 # Oregon 16000.0 # Texax 71000.0
(4)pandas中的isnull和notnull函數可以用于檢測缺失數據,Series也有類似的方法
print pd.isnull(obj4) #輸出結果如下: # California True # Ohio False # Oregon False # Texax False # dtype: bool print pd.notnull(obj4) #輸出結果如下: # California False # Ohio True # Oregon True # Texax True # dtype: bool print obj4.isnull() #Series的isnull方法 #輸出結果如下: # California True # Ohio False # Oregon False # Texax False # dtype: bool
(5)Series最重要的一個功能是:它在算術運算中會自動對齊不同索引的數據。
print obj3,obj4 # Ohio 35000 # Oregon 16000 # Texax 71000 # Utah 5000 # dtype: int64 # # California NaN # Ohio 35000.0 # Oregon 16000.0 # Texax 71000.0 # dtype: float64 print obj3+obj4 # California NaN # Ohio 70000.0 # Oregon 32000.0 # Texax 142000.0 # Utah NaN # dtype: float64
(6)Series對象本身及其索引都有一個name屬性,該屬性跟pandas其他的關鍵功能關系非常密切
obj4.name='population' obj4.index.name='state' print obj4 #輸出如下:加上state和name # state # California NaN # Ohio 35000.0 # Oregon 16000.0 # Texax 71000.0 # Name: population, dtype: float64
(7)Series的索引可以通過賦值的方式就地修改
obj2.index=['Bob','Steven','Jeff','Ryan'] print obj2 #輸出結果如下: # Bob 4 # Steven 7 # Jeff -5 # Ryan 3 # dtype: int64 obj2['Bob']=15 print obj2 #輸出結果如下: # Bob 15 # Steven 7 # Jeff -5 # Ryan 3 # dtype: int64 print obj2['Bob'].values #沒有這種表示法,報錯。因為類似字典取值,直接取鍵值即可 print obj2.values #查看所有值
3. DataFrame相當于有表格,有行表頭和列表頭
a=pd.DataFrame(np.random.rand(4,5),index=list("ABCD"),columns=list('abcde')) print a
4.DataFrame的一些操作
#增加列或修改列 a['f']=[1,2,3,4] a['e']=10 print a print "=======================" #增加行或修改行 a.ix['D']=10 # print a S=pd.DataFrame(np.random.rand(4,6),index=list('EFGH'),columns=list('abcdef')) a=a.append(S) print a print "=======================" #切片 print (a[['b','e']]) #取'b','e'列 print a.loc['A':'D',['a','c','f']] #取'A'-'D'行'a','c','f'列 print "=======================" #減少行或減少列 a=a.drop(['C','D']) #刪除'C'行和'D' print a a=a.drop('a',axis=1) #刪除'a'列,axis=0表示行,axis=1表示列 print a print "=======================" #缺省值處理 a.iloc[2,3]=None #取第三行第4列值設為None a.iloc[4,0]=None #取第五行第1列值設為None print a a=a.fillna(5) #缺省值處(即NaN處填充為5) print a #缺省值去行即有缺省值的把這一行都去掉 a.iloc[2,3]=None a.iloc[4,0]=None print a a=a.dropna() #刪除缺省值為NaN的行 print a print "=======================" #讀取excel,適當改動后,保存到excel中 e1=pd.read_excel('test.xlsx',sheetname='Sheet1') e1.columns=['class','no','name','sex','dormitory','phonenumber'] print(e1) print(e1.ix[2]) print(e1['class']) print(e1.sex) #可將取出的數據處理,處理完后再保存到excel中去 e2=pd.read_excel('test_copy.xlsx',sheetname='Sheet1',names='table1',header=None) e2.columns=['a','b','c','d'] print(e2) e2.to_excel('test_write.xlsx',header=False,index=False)
(1)構建DataFrame 的方法很多,最常用的一種是直接傳入一個由等長列表或者Numpy數組組成的字典
import numpy as np from numpy import random import matplotlib.pyplot as plt from numpy.linalg import inv,qr from pandas import Series,DataFrame import pandas as pd
data={'state':['Ohio','Ohio','Ohio','Nevada','Nevada'], 'year':[2000,2001,2002,2001,2002], 'pop':[1.5,1.7,3.6,2.4,2.9]} frame=DataFrame(data) print frame #輸出的結果如下: # pop state year # 0 1.5 Ohio 2000 # 1 1.7 Ohio 2001 # 2 3.6 Ohio 2002 # 3 2.4 Nevada 2001 # 4 2.9 Nevada 2002
(2)如果指定了列序列,則DataFrame的列就會按照指定的順序進行排序
frame1=DataFrame(data,columns=['year','state','pop']) print frame1 #輸出的結果如下: # year state pop # 0 2000 Ohio 1.5 # 1 2001 Ohio 1.7 # 2 2002 Ohio 3.6 # 3 2001 Nevada 2.4 # 4 2002 Nevada 2.9
(3)跟Series一樣,如果傳入的列在數據中找不到,就會產生NA值
frame2=DataFrame(data,columns=['year','state','pop','debt'], index=['one','two','three','four','five']) #column列的索引,index是行的索引 print frame2 #輸出的結果如下: # year state pop debt # one 2000 Ohio 1.5 NaN # two 2001 Ohio 1.7 NaN # three 2002 Ohio 3.6 NaN # four 2001 Nevada 2.4 NaN # five 2002 Nevada 2.9 NaN print frame2.columns #輸出列的索引 #輸出結果如下: # Index([u'year', u'state', u'pop', u'debt'], dtype='object')
(4)類似字典標記的方式或屬性的方式,可以將DataFrame的列獲取為一個Series.
print frame2['state'] #取出列索引為state的列的數據 #輸出結果如下: # one Ohio # two Ohio # three Ohio # four Nevada # five Nevada # Name: state, dtype: object print frame2.year #輸出結果如下: # one 2000 # two 2001 # three 2002 # four 2001 # five 2002 # Name: year, dtype: int64
(5)返回的Series擁有原DataFrame相同的索引,且其name屬性也已經被相應地設置好了。行也可以通過位置或名稱的方式進行獲取
比如用索引字段ix,ix是取行的索引
print frame2.ix['three'] #輸出的結果如下: # year 2002 # state Ohio # pop 3.6 # debt NaN # Name: three, dtype: object
(6)可以通過賦值的方式進行修改。
# frame2['debt']=16.5 #debt列全為16.5 # print frame2 #輸出結果如下: # year state pop debt # one 2000 Ohio 1.5 16.5 # two 2001 Ohio 1.7 16.5 # three 2002 Ohio 3.6 16.5 # four 2001 Nevada 2.4 16.5 # five 2002 Nevada 2.9 16.5 #將列表或數組賦值給某個列時,其長度必須跟DataFrame的長度相匹配。 #如果賦值的是一個Series,就會精確匹配DataFrame的索引,所有的空位都將被填上缺失值。 frame2['debt']=np.arange(5.) print frame2 #輸出結果如下: # year state pop debt # one 2000 Ohio 1.5 0.0 # two 2001 Ohio 1.7 1.0 # three 2002 Ohio 3.6 2.0 # four 2001 Nevada 2.4 3.0 # five 2002 Nevada 2.9 4.0 #賦值一個Series val=Series([-1.2,-1.5,-1.7],index=['two','four','five']) frame2['debt']=val print frame2 #輸出結果如下:不在index中的索引的值都賦了Nan # year state pop debt # one 2000 Ohio 1.5 NaN # two 2001 Ohio 1.7 -1.2 # three 2002 Ohio 3.6 NaN # four 2001 Nevada 2.4 -1.5 # five 2002 Nevada 2.9 -1.7 #為不存在的列賦值會創建出一個新列。關鍵字del用于刪除列。 frame2['eastern']=frame2.state=='Ohio' #沒有eastern列,固會自動增加一列 #frame2.state=='Ohio'如果等于則返回True,否則返回False print frame2 # year state pop debt eastern # one 2000 Ohio 1.5 NaN True # two 2001 Ohio 1.7 -1.2 True # three 2002 Ohio 3.6 NaN True # four 2001 Nevada 2.4 -1.5 False # five 2002 Nevada 2.9 -1.7 False del frame2['eastern'] #刪除eastern列 print frame2 #返回結果如下: # year state pop debt # one 2000 Ohio 1.5 NaN # two 2001 Ohio 1.7 -1.2 # three 2002 Ohio 3.6 NaN # four 2001 Nevada 2.4 -1.5 # five 2002 Nevada 2.9 -1.7 print frame2.columns #查看frame2的列 #輸出結果如下:Index([u'year', u'state', u'pop', u'debt'], dtype='object')
(7)另一種常見的數據形式是嵌套字典(也就是字典的字典)
pop={'Nevada':{2001:2.4,2002:2.9}, 'Ohio':{2000:1.5,2001:1.7,2002:3.6}} frame3=DataFrame(pop) print frame3 #輸出的結果如下: # Nevada Ohio # 2000 NaN 1.5 # 2001 2.4 1.7 # 2002 2.9 3.6 #可以對frame進行轉置 print frame3.T #輸出結果如下: # 2000 2001 2002 # Nevada NaN 2.4 2.9 # Ohio 1.5 1.7 3.6 print DataFrame(pop,index=[2001,2002,2003]) #輸出結果如下: # Nevada Ohio # 2001 2.4 1.7 # 2002 2.9 3.6 # 2003 NaN NaN pdata={'Ohio':frame3['Ohio'][:-1], 'Nevada':frame3['Nevada'][:2]} print DataFrame(pdata) #輸出結果如下: # Nevada Ohio # 2000 NaN 1.5 # 2001 2.4 1.7
可以輸入給DataFrame構造器的數據:
二維ndarray 數據矩陣,還可以傳入行標和列標 由數組、列表或元組組成的字典 每個序列會變成DataFrame的一列,所有序列的長度必須相同 Numpy的結構化/記錄數組 類似于“由數組組成的字典” 由Series組成的字典 每個Series會成為一列。如果沒顯式指定索引,由各Series的索引會被合 并成結果的行索引 由字典組成的字典 各內層字典會成為一列。鍵會被合并成結果的行索引,跟“由Series組成的字典” 的情況一樣 字典或Series的列表 各項將會成為DataFrame的一行。字典鍵或Series索引的并集將會成為DataFrame 的列標 由列表或元組組成的列表 類似于“二維ndarray” 另一個DataFrame 該DataFrame的索引將會被沿用,除非顯式指定了其它索引 Numpy的MaskedArray 類似于"二維ndarray"的情況,只是掩碼值在結果DataFrame會變成NA/缺失值
#如果設置了DataFrame的index和columns的name屬性,則這些信息也會被顯示出來: frame3.index.name='year'; frame3.columns.name='state' print frame3 #輸出結果如下: # state Nevada Ohio # year # 2000 NaN 1.5 # 2001 2.4 1.7 # 2002 2.9 3.6 #跟Series一樣,values屬性也會以二維ndarray的形式返回DataFrame中的數據: print frame3.values # [[ nan 1.5] # [ 2.4 1.7] # [ 2.9 3.6]] #如果DataFrame各列的數據類型不同,則值數組的數據類型就會選用能兼容所有列的數據類型 print frame2.values # [[2000 'Ohio' 1.5 nan] # [2001 'Ohio' 1.7 -1.2] # [2002 'Ohio' 3.6 nan] # [2001 'Nevada' 2.4 -1.5] # [2002 'Nevada' 2.9 -1.7]]
以上這篇對pandas中兩種數據類型Series和DataFrame的區別詳解就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持億速云。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。