91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

利用Python怎么實現一個大整數乘法算法

發布時間:2021-04-06 17:30:04 來源:億速云 閱讀:225 作者:Leah 欄目:開發技術

利用Python怎么實現一個大整數乘法算法?針對這個問題,這篇文章詳細介紹了相對應的分析和解答,希望可以幫助更多想解決這個問題的小伙伴找到更簡單易行的方法。

介紹原理

karatsuba 算法要求乘數與被乘數要滿足以下幾個條件,第一,乘數與被乘數的位數相同;第二,乘數與被乘數的位數應為  2 次冪,即為 2 ^ 2,  2 ^ 3, 2 ^ 4, 2 ^ n 等數值。

下面我們先來看幾個簡單的例子,并以此來了解 karatsuba 算法的使用方法。

兩位數相乘

我們設被乘數 A = 85,乘數 B = 41。下面來看我們的操作步驟:

將 A, B 一分為二,令 p = A 的前半部分 = 8,q = A 的后半部分 = 5 , r = B 的前半部分 = 4 ,s = B 的后半部分 =  1,n = 2。通過簡單的數學運算:

A * B = pq * rs = (p * 10 + q) * (r * 10 + s)  = p * r * 10 ^ 2 + (p * s + q * r ) * 10 + q * s。

令 u = p * r,v =(p - q) * (s - r),w = q * s。所以 A * B =  u * 10 ^ 2 + (u + v + w) * 10 + w。

換成數值求解的過程如下:

A * B = 85 * 41 = (8 * 10 + 5) * ( 4 * 10 + 1) = 8 * 4 * 10 * 10 + (8 * 1 + 5 * 4) * 10 + 5 * 1。

其中 u = 8 * 4 = 32,v = (8 - 5) (1 - 4) = -9,w = 5 * 1 = 5。

所以,A * B = 32 * 100 + (32 - 9 + 5) * 10 + 5 = 3485。與長乘法所得結果一致。

四位數相乘

我們設被乘數 A = 8537,乘數 B = 4123。下面來看我們的操作步驟:

將 A, B 一分為二,令 p = A 的前半部分 = 85,q = A 的后半部分 = 37 , r = B 的前半部分 = 41 ,s = B 的后半部分 =  23,n = 4。

==> 其中,u = 85 * 41, v = (85 - 37) * (23 - 41), w = 37 * 23。

==> A * B = 8537 * 4123 = u * 10 ^ 4 + (u + v + w) * 10 ^ 2 + w =  3485_0000 +34_7200 + 851 = 35198051。

在我們計算 u, v,  w 的過程中又會涉及兩位數的乘法,我們繼續使用 Karatsuba 算法得出兩位數相乘的結果。

N 位數相乘

我們令 n 為 乘數與被乘數的位數,令 p = A 的前半部分,q = A 的后半部分, r = B 的前半部分 ,s = B 的后半部分。

==> 其中, u = p * r,v = (p - q) * (s - r),w = q * s。

所以 A * B =  u * 10 ^ n + (u + v + w) * 10 ^ (n / 2) + w。

而 u, v, w 則是兩個 n / 2 位的乘法運算。我們繼續調用 Karatsuba 算法計算 u, v, w 的數值。接著,我們在計算 n / 2 乘法的過程中又會遇到 n / 4 位的乘法運算……以此類推,直到我們遇到兩個個位數的乘法,我們就直接返回這兩個個位數乘法的結果。層層返回,最終得到 N 位數的乘法結果。

時間復雜度

我們平常使用的長乘法,是 O (n ^ 2) 的時間復雜度。比如兩個 N 位數相乘,我們需要將每一位按規則相乘,所以需要計算  N * N 次乘法。而使用  Karatsuba 算法每層需要計算三次乘法,兩次加法,以及若干次加法,每使用一次 karatsuba 算法,乘法規模就下降一半。

所以,對于兩個 n =  2 ^ K 位數乘法運算,我們需要計算 3 ^ k 次乘法運算。而 K = log n(底數為 2), 3 ^ K = 3 ^ log n = 2  ^ (log 3 * log n) = 2 ^ (log n * log 3) = n ^ log 3 (底數為 2)。

代碼實現

from math import log2, ceil
 
def pad(string: str, real_len: int, max_len: int) -> str:
  pad_len: int = max_len - real_len
  return f"{'0' * pad_len}{string}"
 
 
def kara(n1: int, n2: int) -> int:
  if n1 < 10 or n2 < 10:
    return n1 * n2
  n1_str: str = str(n1)
  n2_str: str = str(n2)
  n1_len: int = len(n1_str)
  n2_len: int = len(n2_str)
  real_len: int = max(n1_len, n2_len)
  max_len: int = 2 ** ceil(log2(real_len))
  mid_len: int = max_len >> 1
  n1_pad: str = pad(n1_str, n1_len, max_len)
  n2_pad: str = pad(n2_str, n2_len, max_len)
  p: int = int(n1_pad[:mid_len])
  q: int = int(n1_pad[mid_len:])
  r: int = int(n2_pad[:mid_len])
  s: int = int(n2_pad[mid_len:])
  u: int = kara(p, r)
  v: int = kara(q-p, r-s)
  w: int = kara(q, s)
  return u * 10 ** max_len + (u+v+w) * 10 ** mid_len + w

輸出結果:

==> kara(123456, 9734) == 123456 * 9734

==> kara(1234233456756, 32459734) == 1234233456756 * 32459734

關于利用Python怎么實現一個大整數乘法算法問題的解答就分享到這里了,希望以上內容可以對大家有一定的幫助,如果你還有很多疑惑沒有解開,可以關注億速云行業資訊頻道了解更多相關知識。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

临桂县| 柳林县| 常山县| 三河市| 张家港市| 湄潭县| 昭通市| 潍坊市| 舒兰市| 贵德县| 陈巴尔虎旗| 雅安市| 石泉县| 梨树县| 宁化县| 榕江县| 工布江达县| 杭州市| 灵川县| 临武县| 嘉义市| 平罗县| 贵南县| 石阡县| 石棉县| 全椒县| 彰武县| 新营市| 桑日县| 崇左市| 汪清县| 博客| 垫江县| 福清市| 侯马市| 兰州市| 阳东县| 白山市| 丰都县| 普兰店市| 石渠县|