91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

AvgPool2d函數如何在pytorch中使用

發布時間:2021-03-22 16:51:42 來源:億速云 閱讀:491 作者:Leah 欄目:開發技術

AvgPool2d函數如何在pytorch中使用?針對這個問題,這篇文章詳細介紹了相對應的分析和解答,希望可以幫助更多想解決這個問題的小伙伴找到更簡單易行的方法。

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
 
 
 
input = Variable(torch.Tensor([[[1, 3, 3, 4, 5, 6, 7], [1, 2, 3, 4, 5, 6, 7]], [[1, 3, 3, 4, 5, 6, 7], [1, 2, 3, 4, 5, 6, 7]]]))
print("input shape",input.shape)
c = F.avg_pool1d(input, kernel_size=3, stride=2)
print(c)
print("c shape:",c.shape)
 
# m = nn.AvgPool2d(3, stride=2)
m = nn.AvgPool2d((2, 2), stride=(2, 2))
input = Variable(torch.randn(20, 18, 50, 32)) # bach是20,圖片size是50*31,chanel是18(通道是18,也就是每張圖有18個fature map)
input = np.array([[[[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]],
          [[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]]],
         [[[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]],
          [[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]]]]) #size2*2*4*4
print("input shape:",input.shape)
input = Variable(torch.FloatTensor(input))
output = m(input)
print(output)
print("output shape:",output.shape)#(2,2,2,2)

輸出:

input shape torch.Size([2, 2, 7])
tensor([[[ 2.3333, 4.0000, 6.0000],
     [ 2.0000, 4.0000, 6.0000]],
 
    [[ 2.3333, 4.0000, 6.0000],
     [ 2.0000, 4.0000, 6.0000]]])
c shape: torch.Size([2, 2, 3])
input shape: (2, 2, 4, 4)
tensor([[[[ 1.5000, 3.5000],
     [ 1.5000, 3.5000]],
 
     [[ 1.5000, 3.5000],
     [ 1.5000, 3.5000]]],
 
 
    [[[ 1.5000, 3.5000],
     [ 1.5000, 3.5000]],
 
     [[ 1.5000, 3.5000],
     [ 1.5000, 3.5000]]]])
output shape: torch.Size([2, 2, 2, 2])

pytorch中的F.avg_pool1d()平均池化操作作用于一維,input的維度是三維比如[2,2,7]。F.avg_pool1d()中核size是3,步長是2表示每三個數取平均,每隔兩個數取一次.比如[1,3,3,4,5,6,7]安照3個數取均值,兩步取一次,那么結果就是[ 2.3333 ,4 ,6 ],也就是核是一維的,也只作用于一個維度。按照池化操作計算公式input size為[2,2,7],kernel size為3,步長為2,則輸出維度計算(7-3)/2+1=3所以輸出維度是[2,2,3],這與輸出結果是一致的。

pytorch中的F.avg_pool2d(),input是維度是4維如[2,2,4,4],表示這里批量數是2也就是兩張圖像,這里應該是有通道(feature map)數量是2,圖像是size是4*4的.核size是(2,2)步長是(2,2)表示被核覆蓋的數取平均,橫向縱向的步長都是2.那么核是二維的,所以取均值時也是覆蓋二維取的。輸出中第一個1.5的計算是:1+2+1+2/4=1.5.表示第一張圖像左上角的四個像素點的均值。按照池化操作計算公式input size為[2,2,4,4],kernel size為2*2,步長為2,則輸出維度計算(4-2)/2+1=2所以輸出維度是[2,2,2,2],這與輸出結果是一致的。

關于AvgPool2d函數如何在pytorch中使用問題的解答就分享到這里了,希望以上內容可以對大家有一定的幫助,如果你還有很多疑惑沒有解開,可以關注億速云行業資訊頻道了解更多相關知識。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

容城县| 石棉县| 泗阳县| 顺平县| 潜山县| 清远市| 平顶山市| 祁东县| 新丰县| 富顺县| 湘乡市| 新乡市| 莱阳市| 赣州市| 克山县| 石泉县| 东台市| 临西县| 桃江县| 万山特区| 满城县| 东方市| 英山县| 上虞市| 尉犁县| 新巴尔虎右旗| 惠州市| 东方市| 都江堰市| 永善县| 北宁市| 大城县| 酉阳| 阿克苏市| 马龙县| 镇雄县| 丹寨县| 洛阳市| 呼玛县| 宽城| 崇阳县|