您好,登錄后才能下訂單哦!
在MXNet中使用預訓練模型進行遷移學習主要分為以下幾個步驟:
from mxnet.gluon.model_zoo import vision
pretrained_model = vision.resnet18_v2(pretrained=True)
from mxnet.gluon import nn
num_classes = 10
pretrained_model.output = nn.Dense(num_classes)
for param in pretrained_model.collect_params().values():
param.grad_req = 'null'
import mxnet as mx
from mxnet.gluon.data.vision import datasets, transforms
transform = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
])
train_data = datasets.CIFAR10(train=True).transform_first(transform)
test_data = datasets.CIFAR10(train=False).transform_first(transform)
batch_size = 32
train_loader = mx.gluon.data.DataLoader(train_data, batch_size=batch_size, shuffle=True)
test_loader = mx.gluon.data.DataLoader(test_data, batch_size=batch_size, shuffle=False)
import mxnet as mx
ctx = mx.gpu() if mx.context.num_gpus() > 0 else mx.cpu()
pretrained_model.initialize(ctx=ctx)
criterion = mx.gluon.loss.SoftmaxCrossEntropyLoss()
optimizer = mx.gluon.Trainer(pretrained_model.collect_params(), 'sgd', {'learning_rate': 0.001})
num_epochs = 10
for epoch in range(num_epochs):
for inputs, labels in train_loader:
inputs = inputs.as_in_context(ctx)
labels = labels.as_in_context(ctx)
with mx.autograd.record():
outputs = pretrained_model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step(batch_size)
print(f'Epoch {epoch + 1}, Loss: {mx.nd.mean(loss).asscalar()}')
from mxnet import metric
accuracy = metric.Accuracy()
for inputs, labels in test_loader:
inputs = inputs.as_in_context(ctx)
labels = labels.as_in_context(ctx)
outputs = pretrained_model(inputs)
accuracy.update(labels, outputs)
print(f'Test accuracy: {accuracy.get()[1]}')
以上就是在MXNet中使用預訓練模型進行遷移學習的基本步驟,你可以根據具體的任務和數據集進行相應的調整和優化。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。