您好,登錄后才能下訂單哦!
這篇文章主要講解了“怎么使用Python讀取Hive數據庫”,文中的講解內容簡單清晰,易于學習與理解,下面請大家跟著小編的思路慢慢深入,一起來研究和學習“怎么使用Python讀取Hive數據庫”吧!
import logging import pandas as pd from impala.dbapi import connect import sqlalchemy from sqlalchemy.orm import sessionmaker import os import time import os import datetime from dateutil.relativedelta import relativedelta from typing import Dict, List import logging import threading import pandas as pd import pickle class HiveHelper(object): def __init__( self, host='10.2.32.22', port=21051, database='ur_ai_dw', auth_mechanism='LDAP', user='urbi', password='Ur#730xd', logger:logging.Logger=None ): self.host = host self.port = port self.database = database self.auth_mechanism = auth_mechanism self.user = user self.password = password self.logger = logger self.impala_conn = None self.conn = None self.cursor = None self.engine = None self.session = None def create_table_code(self, file_name): '''創建表類代碼''' os.system(f'sqlacodegen {self.connection_str} > {file_name}') return self.conn def get_conn(self): '''創建連接或獲取連接''' if self.conn is None: engine = self.get_engine() self.conn = engine.connect() return self.conn def get_impala_conn(self): '''創建連接或獲取連接''' if self.impala_conn is None: self.impala_conn = connect( host=self.host, port=self.port, database=self.database, auth_mechanism=self.auth_mechanism, user=self.user, password=self.password ) return self.impala_conn def get_engine(self): '''創建連接或獲取連接''' if self.engine is None: self.engine = sqlalchemy.create_engine('impala://', creator=self.get_impala_conn) return self.engine def get_cursor(self): '''創建連接或獲取連接''' if self.cursor is None: self.cursor = self.conn.cursor() return self.cursor def get_session(self) -> sessionmaker: '''創建連接或獲取連接''' if self.session is None: engine = self.get_engine() Session = sessionmaker(bind=engine) self.session = Session() return self.session def close_conn(self): '''關閉連接''' if self.conn is not None: self.conn.close() self.conn = None self.dispose_engine() self.close_impala_conn() def close_impala_conn(self): '''關閉impala連接''' if self.impala_conn is not None: self.impala_conn.close() self.impala_conn = None def close_session(self): '''關閉連接''' if self.session is not None: self.session.close() self.session = None self.dispose_engine() def dispose_engine(self): '''釋放engine''' if self.engine is not None: # self.engine.dispose(close=False) self.engine.dispose() self.engine = None def close_cursor(self): '''關閉cursor''' if self.cursor is not None: self.cursor.close() self.cursor = None def get_data(self, sql, auto_close=True) -> pd.DataFrame: '''查詢數據''' conn = self.get_conn() data = None try: # 異常重試3次 for i in range(3): try: data = pd.read_sql(sql, conn) break except Exception as ex: if i == 2: raise ex # 往外拋出異常 time.sleep(60) # 一分鐘后重試 except Exception as ex: self.logger.exception(ex) raise ex # 往外拋出異常 finally: if auto_close: self.close_conn() return data pass class VarsHelper(): def __init__(self, save_dir, auto_save=True): self.save_dir = save_dir self.auto_save = auto_save self.values = {} if not os.path.exists(os.path.dirname(self.save_dir)): os.makedirs(os.path.dirname(self.save_dir)) if os.path.exists(self.save_dir): with open(self.save_dir, 'rb') as f: self.values = pickle.load(f) f.close() def set_value(self, key, value): self.values[key] = value if self.auto_save: self.save_file() def get_value(self, key): return self.values[key] def has_key(self, key): return key in self.values.keys() def save_file(self): with open(self.save_dir, 'wb') as f: pickle.dump(self.values, f) f.close() pass class GlobalShareArgs(): args = { "debug": False } def get_args(): return GlobalShareArgs.args def set_args(args): GlobalShareArgs.args = args def set_args_value(key, value): GlobalShareArgs.args[key] = value def get_args_value(key, default_value=None): return GlobalShareArgs.args.get(key, default_value) def contain_key(key): return key in GlobalShareArgs.args.keys() def update(args): GlobalShareArgs.args.update(args) pass class ShareArgs(): args = { "labels_dir":"./hjx/shop_group/month_w_amt/data/labels", # 標簽目錄 "labels_output_dir":"./hjx/shop_group/month_w_amt/data/labels_output", # 聚類導出標簽目錄 "common_datas_dir":"./hjx/data", # 共用數據目錄。ur_bi_dw的公共 "only_predict": False, # 只識別,不訓練 "delete_model": True, # 先刪除模型,僅在訓練時使用 "export_excel": False, # 導出excel "classes": 12, # 聚類數 "batch_size": 16, "hidden_size": 32, "max_nrof_epochs": 100, "learning_rate": 0.0005, "loss_type": "categorical_crossentropy", "avg_model_num": 10, "steps_per_epoch": 4.0, # 4.0 "lr_callback_patience": 4, "lr_callback_cooldown": 1, "early_stopping_callback_patience": 6, "get_data": True, } def get_args(): return ShareArgs.args def set_args(args): ShareArgs.args = args def set_args_value(key, value): ShareArgs.args[key] = value def get_args_value(key, default_value=None): return ShareArgs.args.get(key, default_value) def contain_key(key): return key in ShareArgs.args.keys() def update(args): ShareArgs.args.update(args) pass class UrBiGetDatasBase(): # 線程鎖列表,同保存路徑共用鎖 lock_dict:Dict[str, threading.Lock] = {} # 時間列表,用于判斷是否超時 time_dict:Dict[str, datetime.datetime] = {} # 用于記錄是否需要更新超時時間 get_data_timeout_dict:Dict[str, bool] = {} def __init__( self, host='10.2.32.22', port=21051, database='ur_ai_dw', auth_mechanism='LDAP', user='urbi', password='Ur#730xd', save_dir=None, logger:logging.Logger=None, ): self.save_dir = save_dir self.logger = logger self.db_helper = HiveHelper( host=host, port=port, database=database, auth_mechanism=auth_mechanism, user=user, password=password, logger=logger ) # 創建子目錄 if self.save_dir is not None and not os.path.exists(self.save_dir): os.makedirs(self.save_dir) self.vars_helper = None if GlobalShareArgs.get_args_value('debug'): self.vars_helper = VarsHelper('./hjx/data/vars/UrBiGetDatas') def close(self): '''關閉連接''' self.db_helper.close_conn() def get_last_time(self, key_name) -> bool: '''獲取是否超時''' # 轉靜態路徑,確保唯一性 key_name = os.path.abspath(key_name) if self.vars_helper is not None and self.vars_helper.has_key('UrBiGetDatasBase.time_list'): UrBiGetDatasBase.time_dict = self.vars_helper.get_value('UrBiGetDatasBase.time_list') timeout = 12 # 12小時 if GlobalShareArgs.get_args_value('debug'): timeout = 24 # 24小時 get_data_timeout = False if key_name not in UrBiGetDatasBase.time_dict.keys() or (datetime.datetime.today() - UrBiGetDatasBase.time_dict[key_name]).total_seconds()>(timeout*60*60): self.logger.info('超時%d小時,重新查數據:%s', timeout, key_name) # UrBiGetDatasBase.time_list[key_name] = datetime.datetime.today() get_data_timeout = True else: self.logger.info('未超時%d小時,跳過查數據:%s', timeout, key_name) # if self.vars_helper is not None : # self.vars_helper.set_value('UrBiGetDatasBase.time_list', UrBiGetDatasBase.time_list) UrBiGetDatasBase.get_data_timeout_dict[key_name] = get_data_timeout return get_data_timeout def save_last_time(self, key_name): '''更新狀態超時''' # 轉靜態路徑,確保唯一性 key_name = os.path.abspath(key_name) if UrBiGetDatasBase.get_data_timeout_dict[key_name]: UrBiGetDatasBase.time_dict[key_name] = datetime.datetime.today() if self.vars_helper is not None : UrBiGetDatasBase.time_dict[key_name] = datetime.datetime.today() self.vars_helper.set_value('UrBiGetDatasBase.time_list', UrBiGetDatasBase.time_dict) def get_lock(self, key_name) -> threading.Lock: '''獲取鎖''' # 轉靜態路徑,確保唯一性 key_name = os.path.abspath(key_name) if key_name not in UrBiGetDatasBase.lock_dict.keys(): UrBiGetDatasBase.lock_dict[key_name] = threading.Lock() return UrBiGetDatasBase.lock_dict[key_name] def get_data_of_date( self, save_dir, sql, sort_columns:List[str], del_index_list=[-1], # 刪除最后下標 start_date = datetime.datetime(2017, 1, 1), # 開始時間 offset = relativedelta(months=3), # 時間間隔 date_format_fun = lambda d: '%04d%02d01' % (d.year, d.month), # 查詢語句中替代時間參數的格式化 filename_format_fun = lambda d: '%04d%02d.csv' % (d.year, d.month), # 查詢語句中替代時間參數的格式化 stop_date = '20700101', # 超過時間則停止 data_format_fun = None, # 格式化數據 ): '''分時間增量讀取數據''' # 創建文件夾 if not os.path.exists(save_dir): os.makedirs(save_dir) else: #刪除最后一個文件 file_list = os.listdir(save_dir) if len(file_list)>0: file_list.sort() for del_index in del_index_list: os.remove(os.path.join(save_dir,file_list[del_index])) print('刪除最后一個文件:', file_list[del_index]) select_index = -1 # start_date = datetime.datetime(2017, 1, 1) while True: end_date = start_date + offset start_date_str = date_format_fun(start_date) end_date_str = date_format_fun(end_date) self.logger.info('date: %s-%s', start_date_str, end_date_str) file_path = os.path.join(save_dir, filename_format_fun(start_date)) # self.logger.info('file_path: %s', file_path) if not os.path.exists(file_path): data:pd.DataFrame = self.db_helper.get_data(sql % (start_date_str, end_date_str)) if data is None: break self.logger.info('data: %d', len(data)) # self.logger.info('data: %d', data.columns) if len(data)>0: select_index+=1 if data_format_fun is not None: data = data_format_fun(data) # 排序 data = data.sort_values(sort_columns) data.to_csv(file_path) elif select_index!=-1: break elif stop_date < start_date_str: raise Exception("讀取數據異常,時間超出最大值!") start_date = end_date pass class UrBiGetDatas(UrBiGetDatasBase): def __init__( self, host='10.2.32.22', port=21051, database='ur_ai_dw', auth_mechanism='LDAP', user='urbi', password='Ur#730xd', save_dir='./hjx/data/ur_bi_dw_data', logger:logging.Logger=None ): self.save_dir = save_dir self.logger = logger super().__init__( host=host, port=port, database=database, auth_mechanism=auth_mechanism, user=user, password=password, save_dir=save_dir, logger=logger ) def get_dim_date(self): '''日期數據''' file_path = os.path.join(self.save_dir,'ur_bi_dw.dim_date.csv') now_lock = self.get_lock(file_path) now_lock.acquire() # 加鎖 try: # 設置超時4小時才重新查數據 if not self.get_last_time(file_path): return sql = 'SELECT * FROM ur_bi_dw.dim_date' data:pd.DataFrame = self.db_helper.get_data(sql) columns = list(data.columns) columns = {c:'dim_date.'+c for c in columns} data = data.rename(columns=columns) data = data.sort_values(['dim_date.date_key']) data.to_csv(file_path) # 更新超時時間 self.save_last_time(file_path) except Exception as ex: self.logger.exception(ex) raise ex # 往外拋出異常 finally: now_lock.release() # 釋放鎖 def get_dim_shop(self): '''店鋪數據''' file_path = os.path.join(self.save_dir,'ur_bi_dw.dim_shop.csv') now_lock = self.get_lock(file_path) now_lock.acquire() # 加鎖 try: # 設置超時4小時才重新查數據 if not self.get_last_time(file_path): return sql = 'SELECT * FROM ur_bi_dw.dim_shop' data:pd.DataFrame = self.db_helper.get_data(sql) columns = list(data.columns) columns = {c:'dim_shop.'+c for c in columns} data = data.rename(columns=columns) data = data.sort_values(['dim_shop.shop_no']) data.to_csv(file_path) # 更新超時時間 self.save_last_time(file_path) except Exception as ex: self.logger.exception(ex) raise ex # 往外拋出異常 finally: now_lock.release() # 釋放鎖 def get_dim_vip(self): '''會員數據''' sub_dir = os.path.join(self.save_dir,'vip_no') now_lock = self.get_lock(sub_dir) now_lock.acquire() # 加鎖 try: # 設置超時4小時才重新查數據 if not self.get_last_time(sub_dir): return sql = '''SELECT dv.*, dd.date_key, dd.date_name2 FROM ur_bi_dw.dim_vip as dv INNER JOIN ur_bi_dw.dim_date as dd ON dv.card_create_date=dd.date_name2 where dd.date_key >= %s and dd.date_key < %s''' # data:pd.DataFrame = self.db_helper.get_data(sql) sort_columns = ['dv.vip_no'] # TODO: self.get_data_of_date( save_dir=sub_dir, sql=sql, sort_columns=sort_columns, start_date=datetime.datetime(2017, 1, 1), # 開始時間 offset=relativedelta(years=1) ) # 更新超時時間 self.save_last_time(sub_dir) except Exception as ex: self.logger.exception(ex) raise ex # 往外拋出異常 finally: now_lock.release() # 釋放鎖 def get_weather(self): '''天氣數據''' sub_dir = os.path.join(self.save_dir,'weather') now_lock = self.get_lock(sub_dir) now_lock.acquire() # 加鎖 try: # 設置超時4小時才重新查數據 if not self.get_last_time(sub_dir): return sql = """ select weather.* from ur_bi_ods.ods_base_weather_data_1200 as weather where weather.date_key>=%s and weather.date_key<%s """ sort_columns = ['weather.date_key','weather.areaid'] def data_format_fun(data): columns = list(data.columns) columns = {c:'weather.'+c for c in columns} data = data.rename(columns=columns) return data self.get_data_of_date( save_dir=sub_dir, sql=sql, sort_columns=sort_columns, del_index_list=[-2, -1], # 刪除最后下標 data_format_fun=data_format_fun, ) # 更新超時時間 self.save_last_time(sub_dir) except Exception as ex: self.logger.exception(ex) raise ex # 往外拋出異常 finally: now_lock.release() # 釋放鎖 def get_weather_city(self): '''天氣城市數據''' file_path = os.path.join(self.save_dir,'ur_bi_dw.weather_city.csv') now_lock = self.get_lock(file_path) now_lock.acquire() # 加鎖 try: # 設置超時4小時才重新查數據 if not self.get_last_time(file_path): return sql = 'SELECT * FROM ur_bi_dw.dim_weather_city as weather_city' data:pd.DataFrame = self.db_helper.get_data(sql) columns = list(data.columns) columns = {c:'weather_city.'+c for c in columns} data = data.rename(columns=columns) data.to_csv(file_path) # 更新超時時間 self.save_last_time(file_path) except Exception as ex: self.logger.exception(ex) raise ex # 往外拋出異常 finally: now_lock.release() # 釋放鎖 def get_dim_goods(self): '''貨品數據''' file_path = os.path.join(self.save_dir,'ur_bi_dw.dim_goods.csv') now_lock = self.get_lock(file_path) now_lock.acquire() # 加鎖 try: # 設置超時4小時才重新查數據 if not self.get_last_time(file_path): return sql = 'SELECT * FROM ur_bi_dw.dim_goods' data:pd.DataFrame = self.db_helper.get_data(sql) columns = list(data.columns) columns = {c:'dim_goods.'+c for c in columns} data = data.rename(columns=columns) data.to_csv(file_path) # 更新超時時間 self.save_last_time(file_path) except Exception as ex: self.logger.exception(ex) raise ex # 往外拋出異常 finally: now_lock.release() # 釋放鎖 def get_dim_goods_market_shop_date(self): '''店鋪商品生命周期數據''' file_path = os.path.join(self.save_dir,'ur_bi_dw.dim_goods_market_shop_date.csv') now_lock = self.get_lock(file_path) now_lock.acquire() # 加鎖 try: # 設置超時4小時才重新查數據 if not self.get_last_time(file_path): return # sql = 'SELECT * FROM ur_bi_dw.dim_goods_market_shop_date as goods_shop_date' sql = ''' select shop_no, sku_no, shop_market_date, lifecycle_end_date, lifecycle_days FROM ur_bi_dw.dim_goods_market_shop_date where lifecycle_end_date is not null ''' data:pd.DataFrame = self.db_helper.get_data(sql) columns = list(data.columns) columns = {c:c.replace('lifecycle_end_date.','') for c in columns} data = data.rename(columns=columns) data = data.sort_values(['shop_market_date']) data.to_csv(file_path, index=False) # 更新超時時間 self.save_last_time(file_path) except Exception as ex: self.logger.exception(ex) raise ex # 往外拋出異常 finally: now_lock.release() # 釋放鎖 def get_dim_goods_market_date(self): '''全國商品生命周期數據''' file_path = os.path.join(self.save_dir,'ur_bi_dw.dim_goods_market_date.csv') now_lock = self.get_lock(file_path) now_lock.acquire() # 加鎖 try: # 設置超時4小時才重新查數據 if not self.get_last_time(file_path): return sql = ''' select * FROM ur_bi_dw.dim_goods_market_date ''' data:pd.DataFrame = self.db_helper.get_data(sql) columns = list(data.columns) columns = {c:'dim_goods_market_date.'+c for c in columns} data = data.rename(columns=columns) data = data.sort_values(['dim_goods_market_date.sku_no']) data.to_csv(file_path, index=False) # 更新超時時間 self.save_last_time(file_path) except Exception as ex: self.logger.exception(ex) raise ex # 往外拋出異常 finally: now_lock.release() # 釋放鎖 def get_dim_goods_color_dev_sizes(self): '''商品開發碼數數據''' file_path = os.path.join(self.save_dir,'dim_goods_color_dev_sizes.csv') now_lock = self.get_lock(file_path) now_lock.acquire() # 加鎖 try: # 設置超時4小時才重新查數據 if not self.get_last_time(file_path): return # sql = 'SELECT * FROM ur_bi_dw.dim_goods_market_shop_date as goods_shop_date' sql = 'SELECT * FROM ur_bi_dm.dim_goods_color_dev_sizes' data:pd.DataFrame = self.db_helper.get_data(sql) columns = list(data.columns) columns = {c:c.replace('dim_goods_color_dev_sizes.','') for c in columns} data = data.rename(columns=columns) data.to_csv(file_path, index=False) # 更新超時時間 self.save_last_time(file_path) except Exception as ex: self.logger.exception(ex) raise ex # 往外拋出異常 finally: now_lock.release() # 釋放鎖 def get_dwd_daily_sales_size(self): '''實際銷售金額''' sub_dir = os.path.join(self.save_dir,'dwd_daily_sales_size_all') now_lock = self.get_lock(sub_dir) now_lock.acquire() # 加鎖 try: # 設置超時4小時才重新查數據 if not self.get_last_time(sub_dir): return sql = """ select shop_no,sku_no,date_key,`size`, sum(tag_price) as `tag_price`, sum(sales_qty) as `sales_qty`, sum(sales_tag_amt) as `sales_tag_amt`, sum(sales_amt) as `sales_amt`, count(0) as `sales_count` from ur_bi_dw.dwd_daily_sales_size as sales where sales.date_key>=%s and sales.date_key<%s and sales.currency_code='CNY' group by shop_no,sku_no,date_key,`size` """ sort_columns = ['date_key','shop_no','sku_no'] self.get_data_of_date( save_dir=sub_dir, sql=sql, sort_columns=sort_columns, start_date=datetime.datetime(2017, 1, 1), # 開始時間 ) # 更新超時時間 self.save_last_time(sub_dir) except Exception as ex: self.logger.exception(ex) raise ex # 往外拋出異常 finally: now_lock.release() # 釋放鎖 def get_dwd_daily_delivery_size(self): '''實際配貨金額''' sub_dir = os.path.join(self.save_dir,'dwd_daily_delivery_size_all') now_lock = self.get_lock(sub_dir) now_lock.acquire() # 加鎖 try: # 設置超時4小時才重新查數據 if not self.get_last_time(sub_dir): return sql = """ select shop_no,sku_no,date_key,`size`, sum(delivery.shop_distr_received_qty) as `shop_distr_received_qty`, sum(delivery.shop_distr_received_amt) as `shop_distr_received_amt`, sum(delivery.online_distr_received_qty) as `online_distr_received_qty`, sum(delivery.online_distr_received_amt) as `online_distr_received_amt`, sum(delivery.pr_received_qty) as `pr_received_qty`, count(0) as `delivery_count` from ur_bi_dw.dwd_daily_delivery_size as delivery where delivery.date_key>=%s and delivery.date_key<%s and delivery.currency_code='CNY' group by shop_no,sku_no,date_key,`size` """ sort_columns = ['date_key','shop_no','sku_no'] self.get_data_of_date( save_dir=sub_dir, sql=sql, sort_columns=sort_columns, start_date=datetime.datetime(2017, 1, 1), # 開始時間 ) # 更新超時時間 self.save_last_time(sub_dir) except Exception as ex: self.logger.exception(ex) raise ex # 往外拋出異常 finally: now_lock.release() # 釋放鎖 def get_v_last_nation_sales_status(self): '''商品暢滯銷數據''' file_path = os.path.join(self.save_dir,'v_last_nation_sales_status.csv') now_lock = self.get_lock(file_path) now_lock.acquire() # 加鎖 try: # 設置超時4小時才重新查數據 if not self.get_last_time(file_path): return sql = 'SELECT * FROM ur_bi_dw.v_last_nation_sales_status' data:pd.DataFrame = self.db_helper.get_data(sql) columns = list(data.columns) columns = {c:c.replace('v_last_nation_sales_status.','') for c in columns} data = data.rename(columns=columns) data.to_csv(file_path, index=False) # 更新超時時間 self.save_last_time(file_path) except Exception as ex: self.logger.exception(ex) raise ex # 往外拋出異常 finally: now_lock.release() # 釋放鎖 def get_dwd_daily_finacial_goods(self): '''商品成本價數據''' file_path = os.path.join(self.save_dir,'dwd_daily_finacial_goods.csv') now_lock = self.get_lock(file_path) now_lock.acquire() # 加鎖 try: # 設置超時4小時才重新查數據 if not self.get_last_time(file_path): return sql = """ select t1.sku_no,t1.`size`,t1.cost_tax_incl from ur_bi_dw.dwd_daily_finacial_goods as t1 inner join ( select sku_no,`size`,max(date_key) as date_key from ur_bi_dw.dwd_daily_finacial_goods where currency_code='CNY' and country_code='CN' group by sku_no,`size` ) as t2 on t2.sku_no=t1.sku_no and t2.`size`=t1.`size` and t2.date_key=t1.date_key where t1.currency_code='CNY' and t1.country_code='CN' """ data:pd.DataFrame = self.db_helper.get_data(sql) columns = list(data.columns) columns = {c:c.replace('t1.','') for c in columns} data = data.rename(columns=columns) data.to_csv(file_path, index=False) # 更新超時時間 self.save_last_time(file_path) except Exception as ex: self.logger.exception(ex) raise ex # 往外拋出異常 finally: now_lock.release() # 釋放鎖 def get_dim_size_group(self): '''尺碼映射數據''' file_path = os.path.join(self.save_dir,'dim_size_group.csv') now_lock = self.get_lock(file_path) now_lock.acquire() # 加鎖 try: # 設置超時4小時才重新查數據 if not self.get_last_time(file_path): return sql = """select * from ur_bi_dw.dim_size_group""" data:pd.DataFrame = self.db_helper.get_data(sql) columns = list(data.columns) columns = {c:c.replace('dim_size_group.','') for c in columns} data = data.rename(columns=columns) data.to_csv(file_path, index=False) # 更新超時時間 self.save_last_time(file_path) except Exception as ex: self.logger.exception(ex) raise ex # 往外拋出異常 finally: now_lock.release() # 釋放鎖 pass def get_common_datas( host='10.2.32.22', port=21051, database='ur_ai_dw', auth_mechanism='LDAP', user='urbi', password='Ur#730xd', logger:logging.Logger=None): # 共用文件 common_datas_dir = ShareArgs.get_args_value('common_datas_dir') common_ur_bi_dir = os.path.join(common_datas_dir, 'ur_bi_data') ur_bi_get_datas = UrBiGetDatas( host=host, port=port, database=database, auth_mechanism=auth_mechanism, user=user, password=password, save_dir=common_ur_bi_dir, logger=logger ) try: logger.info('正在查詢日期數據...') ur_bi_get_datas.get_dim_date() logger.info('查詢日期數據完成!') logger.info('正在查詢店鋪數據...') ur_bi_get_datas.get_dim_shop() logger.info('查詢店鋪數據完成!') logger.info('正在查詢天氣數據...') ur_bi_get_datas.get_weather() logger.info('查詢天氣數據完成!') logger.info('正在查詢天氣城市數據...') ur_bi_get_datas.get_weather_city() logger.info('查詢天氣城市數據完成!') logger.info('正在查詢貨品數據...') ur_bi_get_datas.get_dim_goods() logger.info('查詢貨品數據完成!') logger.info('正在查詢實際銷量數據...') ur_bi_get_datas.get_dwd_daily_sales_size() logger.info('查詢實際銷量數據完成!') except Exception as ex: logger.exception(ex) raise ex # 往外拋出異常 finally: ur_bi_get_datas.close() pass class CustomUrBiGetDatas(UrBiGetDatasBase): def __init__( self, host='10.2.32.22', port=21051, database='ur_ai_dw', auth_mechanism='LDAP', user='urbi', password='Ur#730xd', save_dir='./hjx/data/ur_bi_data', logger:logging.Logger=None ): self.save_dir = save_dir self.logger = logger super().__init__( host=host, port=port, database=database, auth_mechanism=auth_mechanism, user=user, password=password, save_dir=save_dir, logger=logger ) def get_sales_goal_amt(self): '''銷售目標金額''' file_path = os.path.join(self.save_dir,'month_of_year_sales_goal_amt.csv') now_lock = self.get_lock(file_path) now_lock.acquire() # 加鎖 try: # 設置超時4小時才重新查數據 if not self.get_last_time(file_path): return sql = ''' select sales_goal.shop_no, if(sales_goal.serial='Y','W',sales_goal.serial) as `sales_goal.serial`, dates.month_of_year, sum(sales_goal.sales_goal_amt) as sales_goal_amt from ur_bi_dw.dwd_sales_goal_west as sales_goal inner join ur_bi_dw.dim_date as dates on sales_goal.date_key = dates.date_key group by sales_goal.shop_no, if(sales_goal.serial='Y','W',sales_goal.serial), dates.month_of_year ''' data:pd.DataFrame = self.db_helper.get_data(sql) data = data.rename(columns={ 'shop_no':'sales_goal.shop_no', 'serial':'sales_goal.serial', 'month_of_year':'dates.month_of_year', }) # 排序 data = data.sort_values(['sales_goal.shop_no','sales_goal.serial','dates.month_of_year']) data.to_csv(file_path) # 更新超時時間 self.save_last_time(file_path) except Exception as ex: self.logger.exception(ex) raise ex # 往外拋出異常 finally: now_lock.release() # 釋放鎖 def get_shop_serial_area(self): '''店-系列面積''' file_path = os.path.join(self.save_dir,'shop_serial_area.csv') now_lock = self.get_lock(file_path) now_lock.acquire() # 加鎖 try: # 設置超時4小時才重新查數據 if not self.get_last_time(file_path): return sql = ''' select shop_serial_area.shop_no, if(shop_serial_area.serial='Y','W',shop_serial_area.serial) as `shop_serial_area.serial`, shop_serial_area.month_of_year, sum(shop_serial_area.area) as `shop_serial_area.area` from ur_bi_dw.dwd_shop_serial_area as shop_serial_area where shop_serial_area.area is not null group by shop_serial_area.shop_no,if(shop_serial_area.serial='Y','W',shop_serial_area.serial),shop_serial_area.month_of_year ''' data:pd.DataFrame = self.db_helper.get_data(sql) data = data.rename(columns={ 'shop_no':'shop_serial_area.shop_no', 'serial':'shop_serial_area.serial', 'month_of_year':'shop_serial_area.month_of_year', 'area':'shop_serial_area.area', }) # 排序 data = data.sort_values(['shop_serial_area.shop_no','shop_serial_area.serial','shop_serial_area.month_of_year']) data.to_csv(file_path) # 更新超時時間 self.save_last_time(file_path) except Exception as ex: self.logger.exception(ex) raise ex # 往外拋出異常 finally: now_lock.release() # 釋放鎖 pass def get_datas( host='10.2.32.22', port=21051, database='ur_ai_dw', auth_mechanism='LDAP', user='urbi', password='Ur#730xd', save_dir='./data/sales_forecast/ur_bi_dw_data', logger:logging.Logger=None): ur_bi_get_datas = CustomUrBiGetDatas( host=host, port=port, database=database, auth_mechanism=auth_mechanism, user=user, password=password, save_dir=save_dir, logger=logger ) try: # 店,系列,品類,年月,銷售目標金額 logger.info('正在查詢年月銷售目標金額數據...') ur_bi_get_datas.get_sales_goal_amt() logger.info('查詢年月銷售目標金額數據完成!') except Exception as ex: logger.exception(ex) raise ex # 往外拋出異常 finally: ur_bi_get_datas.close() pass def getdata_ur_bi_dw( host='10.2.32.22', port=21051, database='ur_ai_dw', auth_mechanism='LDAP', user='urbi', password='Ur#730xd', save_dir='./data/sales_forecast/ur_bi_dw_data', logger=None ): get_common_datas( host=host, port=port, database=database, auth_mechanism=auth_mechanism, user=user, password=password, logger=logger ) get_datas( host=host, port=port, database=database, auth_mechanism=auth_mechanism, user=user, password=password, save_dir=save_dir, logger=logger ) pass # 代碼入口 # getdata_ur_bi_dw( # host=ur_bi_dw_host, # port=ur_bi_dw_port, # database=ur_bi_dw_database, # auth_mechanism=ur_bi_dw_auth_mechanism, # user=ur_bi_dw_user, # password=ur_bi_dw_password, # save_dir=ur_bi_dw_save_dir, # logger=logger # )
每個類的具體作用說明,代碼需要根據下面的文字說明進行“食用”:
(第一層)HiveHelper完成了連接數據庫、關閉數據庫連接、生成事務、執行、引擎、連接等功能
VarsHelper提供了一個簡單的持久化功能,可以將對象以文件的形式存放在磁盤上。并提供設置值、獲取值、判斷值是否存在的方法
GlobalShareArgs提供了一個字典,并且提供了獲取字典、設置字典、設置字典鍵值對、設置字典鍵的值、判斷鍵是否在字典中、更新字典等方法
ShareArgs跟GlobalShareArgs類似,只是一開始字典的初始化的鍵值對比較多
(第二層)UrBiGetDataBase類,提供了線程鎖字典、時間字典、超時判斷字典,都是類變量;使用了HiveHelper類,但注意,不是繼承。在具體的sql讀數時,提供了線程固定和時間判斷
(第三層)UrBiGetDatas類,獲取hive數據庫那邊的日期數據、店鋪數據、會員數據、天氣數據、天氣城市數據、商品數據、店鋪生命周期數據、全國商品生命周期數據、商品開發碼數數據、實際銷售金額、實際配貨金額、商品暢滯銷數據、商品成本價數據、尺碼映射數據等。
(第四層)get_common_data函數,使用URBiGetData類讀取日期、店鋪、天氣、天氣城市、貨品、實際銷量數據,并緩存到文件夾./yongjian/data/ur_bi_data下面
CustomUrBiGetData類,繼承了UrBiGetDatasBase類,讀取銷售目標金額、點系列面積數據。
(這個也是第四層)get_datas函數,通過CustomUrBiGetData類,讀取年月銷售目標金額。
總的函數:(這個是總的調用入口函數)get_data_ur_bi_dw函數,調用了get_common_data和get_datas函數進行讀取數據,然后將數據保存到某個文件夾目錄下面。
舉一反三,如果你不是hive數據庫,你可以將第一層這個底層更換成mysql。主頁有解釋如果進行更換。第二層不需要改變,第三層就是你想要進行讀取的數據表,不同的數據庫你想要讀取的數據表也不同,所以sql需要你在這里寫,套用里面的方法即可,基本上就是修改sql就好了。
這種方法的好處在于,數據不會重復讀取,并且讀取的數據都可以得到高效的使用。
import logging import pandas as pd from impala.dbapi import connect import sqlalchemy from sqlalchemy.orm import sessionmaker import os import time import os import datetime from dateutil.relativedelta import relativedelta from typing import Dict, List import logging import threading import pandas as pd import pickle class MySqlHelper(object): def __init__( self, host='192.168.15.144', port=3306, database='test_ims', user='spkjz_writer', password='7cmoP3QDtueVJQj2q4Az', logger:logging.Logger=None ): self.host = host self.port = port self.database = database self.user = user self.password = password self.logger = logger self.connection_str = 'mysql+pymysql://%s:%s@%s:%d/%s' %( self.user, self.password, self.host, self.port, self.database ) self.conn = None self.cursor = None self.engine = None self.session = None def create_table_code(self, file_name): '''創建表類代碼''' os.system(f'sqlacodegen {self.connection_str} > {file_name}') return self.conn def get_conn(self): '''創建連接或獲取連接''' if self.conn is None: engine = self.get_engine() self.conn = engine.connect() return self.conn def get_engine(self): '''創建連接或獲取連接''' if self.engine is None: self.engine = sqlalchemy.create_engine(self.connection_str) return self.engine def get_cursor(self): '''創建連接或獲取連接''' if self.cursor is None: self.cursor = self.conn.cursor() return self.cursor def get_session(self) -> sessionmaker: '''創建連接或獲取連接''' if self.session is None: engine = self.get_engine() Session = sessionmaker(bind=engine) self.session = Session() return self.session def close_conn(self): '''關閉連接''' if self.conn is not None: self.conn.close() self.conn = None self.dispose_engine() def close_session(self): '''關閉連接''' if self.session is not None: self.session.close() self.session = None self.dispose_engine() def dispose_engine(self): '''釋放engine''' if self.engine is not None: # self.engine.dispose(close=False) self.engine.dispose() self.engine = None def close_cursor(self): '''關閉cursor''' if self.cursor is not None: self.cursor.close() self.cursor = None def get_data(self, sql, auto_close=True) -> pd.DataFrame: '''查詢數據''' conn = self.get_conn() data = None try: # 異常重試3次 for i in range(3): try: data = pd.read_sql(sql, conn) break except Exception as ex: if i == 2: raise ex # 往外拋出異常 time.sleep(60) # 一分鐘后重試 except Exception as ex: self.logger.exception(ex) raise ex # 往外拋出異常 finally: if auto_close: self.close_conn() return data pass class VarsHelper(): def __init__(self, save_dir, auto_save=True): self.save_dir = save_dir self.auto_save = auto_save self.values = {} if not os.path.exists(os.path.dirname(self.save_dir)): os.makedirs(os.path.dirname(self.save_dir)) if os.path.exists(self.save_dir): with open(self.save_dir, 'rb') as f: self.values = pickle.load(f) f.close() def set_value(self, key, value): self.values[key] = value if self.auto_save: self.save_file() def get_value(self, key): return self.values[key] def has_key(self, key): return key in self.values.keys() def save_file(self): with open(self.save_dir, 'wb') as f: pickle.dump(self.values, f) f.close() pass class GlobalShareArgs(): args = { "debug": False } def get_args(): return GlobalShareArgs.args def set_args(args): GlobalShareArgs.args = args def set_args_value(key, value): GlobalShareArgs.args[key] = value def get_args_value(key, default_value=None): return GlobalShareArgs.args.get(key, default_value) def contain_key(key): return key in GlobalShareArgs.args.keys() def update(args): GlobalShareArgs.args.update(args) pass class ShareArgs(): args = { "labels_dir":"./hjx/shop_group/month_w_amt/data/labels", # 標簽目錄 "labels_output_dir":"./hjx/shop_group/month_w_amt/data/labels_output", # 聚類導出標簽目錄 "common_datas_dir":"./hjx/data", # 共用數據目錄。ur_bi_dw的公共 "only_predict": False, # 只識別,不訓練 "delete_model": True, # 先刪除模型,僅在訓練時使用 "export_excel": False, # 導出excel "classes": 12, # 聚類數 "batch_size": 16, "hidden_size": 32, "max_nrof_epochs": 100, "learning_rate": 0.0005, "loss_type": "categorical_crossentropy", "avg_model_num": 10, "steps_per_epoch": 4.0, # 4.0 "lr_callback_patience": 4, "lr_callback_cooldown": 1, "early_stopping_callback_patience": 6, "get_data": True, } def get_args(): return ShareArgs.args def set_args(args): ShareArgs.args = args def set_args_value(key, value): ShareArgs.args[key] = value def get_args_value(key, default_value=None): return ShareArgs.args.get(key, default_value) def contain_key(key): return key in ShareArgs.args.keys() def update(args): ShareArgs.args.update(args) pass class IMSGetDatasBase(): # 線程鎖列表,同保存路徑共用鎖 lock_dict:Dict[str, threading.Lock] = {} # 時間列表,用于判斷是否超時 time_dict:Dict[str, datetime.datetime] = {} # 用于記錄是否需要更新超時時間 get_data_timeout_dict:Dict[str, bool] = {} def __init__( self, host='192.168.15.144', port=3306, database='test_ims', user='spkjz_writer', password='Ur#7cmoP3QDtueVJQj2q4Az', save_dir=None, logger:logging.Logger=None, ): self.save_dir = save_dir self.logger = logger self.db_helper = MySqlHelper( host=host, port=port, database=database, user=user, password=password, logger=logger ) # 創建子目錄 if self.save_dir is not None and not os.path.exists(self.save_dir): os.makedirs(self.save_dir) self.vars_helper = None if GlobalShareArgs.get_args_value('debug'): self.vars_helper = VarsHelper('./hjx/data/vars/IMSGetDatas') # 把超時時間保存到文件,注釋該行即可停掉,只用于調試 def close(self): '''關閉連接''' self.db_helper.close_conn() def get_last_time(self, key_name) -> bool: '''獲取是否超時''' # 轉靜態路徑,確保唯一性 key_name = os.path.abspath(key_name) if self.vars_helper is not None and self.vars_helper.has_key('IMSGetDatasBase.time_list'): IMSGetDatasBase.time_dict = self.vars_helper.get_value('IMSGetDatasBase.time_list') timeout = 12 # 12小時 if GlobalShareArgs.get_args_value('debug'): timeout = 24 # 24小時 get_data_timeout = False if key_name not in IMSGetDatasBase.time_dict.keys() or (datetime.datetime.today() - IMSGetDatasBase.time_dict[key_name]).total_seconds()>(4*60*60): self.logger.info('超時%d小時,重新查數據:%s', timeout, key_name) # IMSGetDatasBase.time_list[key_name] = datetime.datetime.today() get_data_timeout = True else: self.logger.info('未超時%d小時,跳過查數據:%s', timeout, key_name) # if self.vars_helper is not None : # self.vars_helper.set_value('IMSGetDatasBase.time_list', IMSGetDatasBase.time_list) IMSGetDatasBase.get_data_timeout_dict[key_name] = get_data_timeout return get_data_timeout def save_last_time(self, key_name): '''更新狀態超時''' # 轉靜態路徑,確保唯一性 key_name = os.path.abspath(key_name) if IMSGetDatasBase.get_data_timeout_dict[key_name]: IMSGetDatasBase.time_dict[key_name] = datetime.datetime.today() if self.vars_helper is not None : IMSGetDatasBase.time_dict[key_name] = datetime.datetime.today() self.vars_helper.set_value('IMSGetDatasBase.time_list', IMSGetDatasBase.time_dict) def get_lock(self, key_name) -> threading.Lock: '''獲取鎖''' # 轉靜態路徑,確保唯一性 key_name = os.path.abspath(key_name) if key_name not in IMSGetDatasBase.lock_dict.keys(): IMSGetDatasBase.lock_dict[key_name] = threading.Lock() return IMSGetDatasBase.lock_dict[key_name] def get_data_of_date( self, save_dir, sql, sort_columns:List[str], del_index_list=[-1], # 刪除最后下標 start_date = datetime.datetime(2017, 1, 1), # 開始時間 offset = relativedelta(months=3), # 時間間隔 date_format_fun = lambda d: '%04d%02d01' % (d.year, d.month), # 查詢語句中替代時間參數的格式化 filename_format_fun = lambda d: '%04d%02d.csv' % (d.year, d.month), # 查詢語句中替代時間參數的格式化 stop_date = '20700101', # 超過時間則停止 ): '''分時間增量讀取數據''' # 創建文件夾 if not os.path.exists(save_dir): os.makedirs(save_dir) else: #刪除最后一個文件 file_list = os.listdir(save_dir) if len(file_list)>0: file_list.sort() for del_index in del_index_list: os.remove(os.path.join(save_dir,file_list[del_index])) print('刪除最后一個文件:', file_list[del_index]) select_index = -1 # start_date = datetime.datetime(2017, 1, 1) while True: end_date = start_date + offset start_date_str = date_format_fun(start_date) end_date_str = date_format_fun(end_date) self.logger.info('date: %s-%s', start_date_str, end_date_str) file_path = os.path.join(save_dir, filename_format_fun(start_date)) # self.logger.info('file_path: %s', file_path) if not os.path.exists(file_path): data:pd.DataFrame = self.db_helper.get_data(sql % (start_date_str, end_date_str)) if data is None: break self.logger.info('data: %d', len(data)) # self.logger.info('data: %d', data.columns) if len(data)>0: select_index+=1 # 排序 data = data.sort_values(sort_columns) data.to_csv(file_path) elif select_index!=-1: break elif stop_date < start_date_str: raise Exception("讀取數據異常,時間超出最大值!") start_date = end_date pass class CustomIMSGetDatas(IMSGetDatasBase): def __init__( self, host='192.168.13.134', port=4000, database='test_ims', user='root', password='rootimmsadmin', save_dir='./hjx/data/export_ims_data', logger:logging.Logger=None ): self.save_dir = save_dir self.logger = logger super().__init__( host=host, port=port, database=database, user=user, password=password, save_dir=save_dir, logger=logger ) def get_ims_w_amt_pro(self): '''年月系列占比數據''' file_path = os.path.join(self.save_dir,'ims_w_amt_pro.csv') now_lock = self.get_lock(file_path) now_lock.acquire() # 加鎖 try: # 設置超時4小時才重新查數據 # if not self.get_last_time(file_path): # return sql = 'SELECT * FROM ims_w_amt_pro' data:pd.DataFrame = self.db_helper.get_data(sql) data = data.rename(columns={ 'serial_forecast_proportion': 'forecast_proportion', }) data.to_csv(file_path) # # 更新超時時間 # self.save_last_time(file_path) except Exception as ex: self.logger.exception(ex) raise ex # 往外拋出異常 finally: now_lock.release() # 釋放鎖 pass def get_datas( host='192.168.13.134', port=4000, database='test_ims', user='root', password='rootimmsadmin', save_dir='./hjx/data/export_ims_data', logger:logging.Logger=None ): ur_bi_get_datas = CustomIMSGetDatas( host=host, port=port, database=database, user=user, password=password, save_dir=save_dir, logger=logger ) try: # 年月系列占比數據 logger.info('正在查詢年月系列占比數據...') ur_bi_get_datas.get_ims_w_amt_pro() logger.info('查詢年月系列占比數據完成!') except Exception as ex: logger.exception(ex) raise ex # 往外拋出異常 finally: ur_bi_get_datas.close() pass def getdata_export_ims( host='192.168.13.134', port=4000, database='test_ims', user='root', password='rootimmsadmin', save_dir='./hjx/data/export_ims_data', logger:logging.Logger=None ): get_datas( host=host, port=port, database=database, user=user, password=password, save_dir=save_dir, logger=logger ) pass
感謝各位的閱讀,以上就是“怎么使用Python讀取Hive數據庫”的內容了,經過本文的學習后,相信大家對怎么使用Python讀取Hive數據庫這一問題有了更深刻的體會,具體使用情況還需要大家實踐驗證。這里是億速云,小編將為大家推送更多相關知識點的文章,歡迎關注!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。