您好,登錄后才能下訂單哦!
這篇文章主要講解了“怎么使用R語言做邏輯回歸”,文中的講解內容簡單清晰,易于學習與理解,下面請大家跟著小編的思路慢慢深入,一起來研究和學習“怎么使用R語言做邏輯回歸”吧!
library(ggplot2) ## Warning: package 'ggplot2' was built under R version 3.1.3 library(Rcpp) ## Warning: package 'Rcpp' was built under R version 3.2.2 然后加載測試數據 mydata <- read.csv("http://www.ats.ucla.edu/stat/data/binary.csv") ## 這里直接讀取網絡數據 head(mydata) ## admit gre gpa rank ## 1 0 380 3.61 3 ## 2 1 660 3.67 3 ## 3 1 800 4.00 1 ## 4 1 640 3.19 4 ## 5 0 520 2.93 4 ## 6 1 760 3.00 2 #This dataset has a binary response (outcome, dependent) variable called admit. #There are three predictor variables: gre, gpa and rank. We will treat the variables gre and gpa as continuous. #The variable rank takes on the values 1 through 4. summary(mydata) ## admit gre gpa rank ## Min. :0.0000 Min. :220.0 Min. :2.260 Min. :1.000 ## 1st Qu.:0.0000 1st Qu.:520.0 1st Qu.:3.130 1st Qu.:2.000 ## Median :0.0000 Median :580.0 Median :3.395 Median :2.000 ## Mean :0.3175 Mean :587.7 Mean :3.390 Mean :2.485 ## 3rd Qu.:1.0000 3rd Qu.:660.0 3rd Qu.:3.670 3rd Qu.:3.000 ## Max. :1.0000 Max. :800.0 Max. :4.000 Max. :4.000 sapply(mydata, sd) ## admit gre gpa rank ## 0.4660867 115.5165364 0.3805668 0.9444602 xtabs(~ admit + rank, data = mydata) ##保證結果變量只能是錄取與否,不能有其它!!! ## rank ## admit 1 2 3 4 ## 0 28 97 93 55 ## 1 33 54 28 12
可以看到這個數據集是關于申請學校是否被錄取的,根據學生的GRE成績,GPA和排名來預測該學生是否被錄取。
其中GRE成績是連續性的變量,學生可以考取任意正常分數。
而GPA也是連續性的變量,任意正常GPA均可。
最后的排名雖然也是連續性變量,但是一般前幾名才有資格申請,所以這里把它當做因子,只考慮前四名!
而我們想做這個邏輯回歸分析的目的也很簡單,就是想根據學生的成績排名,績點信息,托福或者GRE成績來預測它被錄取的概率是多少!
mydata$rank <- factor(mydata$rank) mylogit <- glm(admit ~ gre + gpa + rank, data = mydata, family = "binomial") summary(mylogit) ## ## Call: ## glm(formula = admit ~ gre + gpa + rank, family = "binomial", ## data = mydata) ## ## Deviance Residuals: ## Min 1Q Median 3Q Max ## -1.6268 -0.8662 -0.6388 1.1490 2.0790 ## ## Coefficients: ## Estimate Std. Error z value Pr(>|z|) ## (Intercept) -3.989979 1.139951 -3.500 0.000465 *** ## gre 0.002264 0.001094 2.070 0.038465 * ## gpa 0.804038 0.331819 2.423 0.015388 * ## rank2 -0.675443 0.316490 -2.134 0.032829 * ## rank3 -1.340204 0.345306 -3.881 0.000104 *** ## rank4 -1.551464 0.417832 -3.713 0.000205 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## (Dispersion parameter for binomial family taken to be 1) ## ## Null deviance: 499.98 on 399 degrees of freedom ## Residual deviance: 458.52 on 394 degrees of freedom ## AIC: 470.52 ## ## Number of Fisher Scoring iterations: 4
根據對這個模型的summary結果可知:
GRE成績每增加1分,被錄取的優勢對數(log odds)增加0.002
而GPA每增加1單位,被錄取的優勢對數(log odds)增加0.804,不過一般GPA相差都是零點幾。
最后第二名的同學比第一名同學在其它同等條件下被錄取的優勢對數(log odds)小了0.675,看來排名非常重要啊!!!
這里必須解釋一下這個優勢對數(log odds)是什么意思了,如果預測這個學生被錄取的概率是p,那么優勢對數(log odds)就是log2(p/(1-p)),一般是以自然對數為底
## 重點是predict函數,type參數 newdata1 <- with(mydata, data.frame(gre = mean(gre), gpa = mean(gpa), rank = factor(1:4))) newdata1 ## gre gpa rank ## 1 587.7 3.3899 1 ## 2 587.7 3.3899 2 ## 3 587.7 3.3899 3 ## 4 587.7 3.3899 4 ## 這里構造一個需要預測的矩陣,4個學生,除了排名不一樣,GRE和GPA都一樣 newdata1$rankP <- predict(mylogit, newdata = newdata1, type = "response") newdata1 ## gre gpa rank rankP ## 1 587.7 3.3899 1 0.5166016 ## 2 587.7 3.3899 2 0.3522846 ## 3 587.7 3.3899 3 0.2186120 ## 4 587.7 3.3899 4 0.1846684 ## type = "response" 直接返回預測的概率值0~1之間 可以看到,排名越高,被錄取的概率越大!!! log(0.5166016/(1-0.5166016)) ## 第一名的優勢對數0.06643082 log((0.3522846/(1-0.3522846))) ##第二名的優勢對數-0.609012 兩者的差值正好是0.675,就是模型里面預測的! newdata2 <- with(mydata, data.frame(gre = rep(seq(from = 200, to = 800, length.out = 100), 4), gpa = mean(gpa), rank = factor(rep(1:4, each = 100)))) ##newdata2 ##這個數據集也是構造出來,需要用模型來預測的! newdata3 <- cbind(newdata2, predict(mylogit, newdata = newdata2, type="link", se=TRUE)) ## type="link" 返回fit值,需要進一步用plogis處理成概率值 ## ?plogis The Logistic Distribution newdata3 <- within(newdata3, { PredictedProb <- plogis(fit) LL <- plogis(fit - (1.96 * se.fit)) UL <- plogis(fit + (1.96 * se.fit)) }) 最后可以做一些簡單的可視化 head(newdata3) ## gre gpa rank fit se.fit residual.scale UL ## 1 200.0000 3.3899 1 -0.8114870 0.5147714 1 0.5492064 ## 2 206.0606 3.3899 1 -0.7977632 0.5090986 1 0.5498513 ## 3 212.1212 3.3899 1 -0.7840394 0.5034491 1 0.5505074 ## 4 218.1818 3.3899 1 -0.7703156 0.4978239 1 0.5511750 ## 5 224.2424 3.3899 1 -0.7565919 0.4922237 1 0.5518545 ## 6 230.3030 3.3899 1 -0.7428681 0.4866494 1 0.5525464 ## LL PredictedProb ## 1 0.1393812 0.3075737 ## 2 0.1423880 0.3105042 ## 3 0.1454429 0.3134499 ## 4 0.1485460 0.3164108 ## 5 0.1516973 0.3193867 ## 6 0.1548966 0.3223773 ggplot(newdata3, aes(x = gre, y = PredictedProb)) + geom_ribbon(aes(ymin = LL, ymax = UL, fill = rank), alpha = .2) + geom_line(aes(colour = rank), size=1)
感謝各位的閱讀,以上就是“怎么使用R語言做邏輯回歸”的內容了,經過本文的學習后,相信大家對怎么使用R語言做邏輯回歸這一問題有了更深刻的體會,具體使用情況還需要大家實踐驗證。這里是億速云,小編將為大家推送更多相關知識點的文章,歡迎關注!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。