您好,登錄后才能下訂單哦!
這篇文章主要介紹了Python如何破解滑動驗證碼的相關知識,內容詳細易懂,操作簡單快捷,具有一定借鑒價值,相信大家閱讀完這篇Python如何破解滑動驗證碼文章都會有所收獲,下面我們一起來看看吧。
對于這類驗證,如果我們直接模擬表單請求,繁瑣的認證參數與認證流程會讓你蛋碎一地,我們可以用selenium驅動瀏覽器來解決這個問題,大致分為以下幾個步驟
1、輸入用戶名,密碼
2、點擊按鈕驗證,彈出沒有缺口的圖
3、獲得沒有缺口的圖片
4、點擊滑動按鈕,彈出有缺口的圖
5、獲得有缺口的圖片
6、對比兩張圖片,找出缺口,即滑動的位移
7、按照人的行為行為習慣,把總位移切成一段段小的位移
8、按照位移移動
9、完成登錄
位移移動的代碼實現
def get_track(distance):
'''
拿到移動軌跡,模仿人的滑動行為,先勻加速后勻減速
勻變速運動基本公式:
①v=v0+at
②s=v0t+(1/2)at2
③v2-v02=2as
:param distance: 需要移動的距離
:return: 存放每0.2秒移動的距離
'''
# 初速度
v=0
# 單位時間為0.2s來統計軌跡,軌跡即0.2內的位移
t=0.1
# 位移/軌跡列表,列表內的一個元素代表0.2s的位移
tracks=[]
# 當前的位移
current=0
# 到達mid值開始減速
mid=distance * 4/5
distance += 10 # 先滑過一點,最后再反著滑動回來
while current < distance:
if current < mid:
# 加速度越小,單位時間的位移越小,模擬的軌跡就越多越詳細
a = 2 # 加速運動
else:
a = -3 # 減速運動
# 初速度
v0 = v
# 0.2秒時間內的位移
s = v0*t+0.5*a*(t**2)
# 當前的位置
current += s
# 添加到軌跡列表
tracks.append(round(s))
# 速度已經達到v,該速度作為下次的初速度
v= v0+a*t
# 反著滑動到大概準確位置
for i in range(3):
tracks.append(-2)
for i in range(4):
tracks.append(-1)
return tracks
def get_distance(image1,image2):
'''
拿到滑動驗證碼需要移動的距離
:param image1:沒有缺口的圖片對象
:param image2:帶缺口的圖片對象
:return:需要移動的距離
'''
# print('size', image1.size)
threshold = 50
for i in range(0,image1.size[0]): # 260
for j in range(0,image1.size[1]): # 160
pixel1 = image1.getpixel((i,j))
pixel2 = image2.getpixel((i,j))
res_R = abs(pixel1[0]-pixel2[0]) # 計算RGB差
res_G = abs(pixel1[1] - pixel2[1]) # 計算RGB差
res_B = abs(pixel1[2] - pixel2[2]) # 計算RGB差
if res_R > threshold and res_G > threshold and res_B > threshold:
return i # 需要移動的距離
def merge_image(image_file,location_list):
"""
拼接圖片
:param image_file:
:param location_list:
:return:
"""
im = Image.open(image_file)
im.save('code.jpg')
new_im = Image.new('RGB',(260,116))
# 把無序的圖片 切成52張小圖片
im_list_upper = []
im_list_down = []
# print(location_list)
for location in location_list:
# print(location['y'])
if location['y'] == -58: # 上半邊
im_list_upper.append(im.crop((abs(location['x']),58,abs(location['x'])+10,116)))
if location['y'] == 0: # 下半邊
im_list_down.append(im.crop((abs(location['x']),0,abs(location['x'])+10,58)))
x_offset = 0
for im in im_list_upper:
new_im.paste(im,(x_offset,0)) # 把小圖片放到 新的空白圖片上
x_offset += im.size[0]
x_offset = 0
for im in im_list_down:
new_im.paste(im,(x_offset,58))
x_offset += im.size[0]
new_im.show()
return new_im
def get_image(driver,div_path):
'''
下載無序的圖片 然后進行拼接 獲得完整的圖片
:param driver:
:param div_path:
:return:
'''
time.sleep(2)
background_images = driver.find_elements_by_xpath(div_path)
location_list = []
for background_image in background_images:
location = {}
result = re.findall('background-image: url("(.*?)"); background-position: (.*?)px (.*?)px;',background_image.get_attribute('style'))
# print(result)
location['x'] = int(result[0][1])
location['y'] = int(result[0][2])
image_url = result[0][0]
location_list.append(location)
print('==================================')
image_url = image_url.replace('webp','jpg')
# '替換url http://static.geetest.com/pictures/gt/579066de6/579066de6.webp'
image_result = requests.get(image_url).content
# with open('1.jpg','wb') as f:
# f.write(image_result)
image_file = BytesIO(image_result) # 是一張無序的圖片
image = merge_image(image_file,location_list)
return image
print('第一步,點擊滑動按鈕')
ActionChains(driver).click_and_hold(on_element=element).perform() # 點擊鼠標左鍵,按住不放
time.sleep(1)
print('第二步,拖動元素')
for track in track_list:
ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform() # 鼠標移動到距離當前位置(x,y)
if l<100:
ActionChains(driver).move_by_offset(xoffset=-2, yoffset=0).perform()
else:
ActionChains(driver).move_by_offset(xoffset=-5, yoffset=0).perform()
time.sleep(1)
print('第三步,釋放鼠標')
ActionChains(driver).release(on_element=element).perform()
from selenium import webdriver
from selenium.webdriver.support.ui import WebDriverWait # 等待元素加載的
from selenium.webdriver.common.action_chains import ActionChains #拖拽
from selenium.webdriver.support import expected_conditions as EC
from selenium.common.exceptions import TimeoutException, NoSuchElementException
from selenium.webdriver.common.by import By
from PIL import Image
import requests
import time
import re
import random
from io import BytesIO
def merge_image(image_file,location_list):
"""
拼接圖片
:param image_file:
:param location_list:
:return:
"""
im = Image.open(image_file)
im.save('code.jpg')
new_im = Image.new('RGB',(260,116))
# 把無序的圖片 切成52張小圖片
im_list_upper = []
im_list_down = []
# print(location_list)
for location in location_list:
# print(location['y'])
if location['y'] == -58: # 上半邊
im_list_upper.append(im.crop((abs(location['x']),58,abs(location['x'])+10,116)))
if location['y'] == 0: # 下半邊
im_list_down.append(im.crop((abs(location['x']),0,abs(location['x'])+10,58)))
x_offset = 0
for im in im_list_upper:
new_im.paste(im,(x_offset,0)) # 把小圖片放到 新的空白圖片上
x_offset += im.size[0]
x_offset = 0
for im in im_list_down:
new_im.paste(im,(x_offset,58))
x_offset += im.size[0]
new_im.show()
return new_im
def get_image(driver,div_path):
'''
下載無序的圖片 然后進行拼接 獲得完整的圖片
:param driver:
:param div_path:
:return:
'''
time.sleep(2)
background_images = driver.find_elements_by_xpath(div_path)
location_list = []
for background_image in background_images:
location = {}
result = re.findall('background-image: url("(.*?)"); background-position: (.*?)px (.*?)px;',background_image.get_attribute('style'))
# print(result)
location['x'] = int(result[0][1])
location['y'] = int(result[0][2])
image_url = result[0][0]
location_list.append(location)
print('==================================')
image_url = image_url.replace('webp','jpg')
# '替換url http://static.geetest.com/pictures/gt/579066de6/579066de6.webp'
image_result = requests.get(image_url).content
# with open('1.jpg','wb') as f:
# f.write(image_result)
image_file = BytesIO(image_result) # 是一張無序的圖片
image = merge_image(image_file,location_list)
return image
def get_track(distance):
'''
拿到移動軌跡,模仿人的滑動行為,先勻加速后勻減速
勻變速運動基本公式:
①v=v0+at
②s=v0t+(1/2)at2
③v2-v02=2as
:param distance: 需要移動的距離
:return: 存放每0.2秒移動的距離
'''
# 初速度
v=0
# 單位時間為0.2s來統計軌跡,軌跡即0.2內的位移
t=0.2
# 位移/軌跡列表,列表內的一個元素代表0.2s的位移
tracks=[]
# 當前的位移
current=0
# 到達mid值開始減速
mid=distance * 7/8
distance += 10 # 先滑過一點,最后再反著滑動回來
# a = random.randint(1,3)
while current < distance:
if current < mid:
# 加速度越小,單位時間的位移越小,模擬的軌跡就越多越詳細
a = random.randint(2,4) # 加速運動
else:
a = -random.randint(3,5) # 減速運動
# 初速度
v0 = v
# 0.2秒時間內的位移
s = v0*t+0.5*a*(t**2)
# 當前的位置
current += s
# 添加到軌跡列表
tracks.append(round(s))
# 速度已經達到v,該速度作為下次的初速度
v= v0+a*t
# 反著滑動到大概準確位置
for i in range(4):
tracks.append(-random.randint(2,3))
for i in range(4):
tracks.append(-random.randint(1,3))
return tracks
def get_distance(image1,image2):
'''
拿到滑動驗證碼需要移動的距離
:param image1:沒有缺口的圖片對象
:param image2:帶缺口的圖片對象
:return:需要移動的距離
'''
# print('size', image1.size)
threshold = 50
for i in range(0,image1.size[0]): # 260
for j in range(0,image1.size[1]): # 160
pixel1 = image1.getpixel((i,j))
pixel2 = image2.getpixel((i,j))
res_R = abs(pixel1[0]-pixel2[0]) # 計算RGB差
res_G = abs(pixel1[1] - pixel2[1]) # 計算RGB差
res_B = abs(pixel1[2] - pixel2[2]) # 計算RGB差
if res_R > threshold and res_G > threshold and res_B > threshold:
return i # 需要移動的距離
def main_check_code(driver, element):
"""
拖動識別驗證碼
:param driver:
:param element:
:return:
"""
image1 = get_image(driver, '//div[@class="gt_cut_bg gt_show"]/div')
image2 = get_image(driver, '//div[@class="gt_cut_fullbg gt_show"]/div')
# 圖片上 缺口的位置的x坐標
# 2 對比兩張圖片的所有RBG像素點,得到不一樣像素點的x值,即要移動的距離
l = get_distance(image1, image2)
print('l=',l)
# 3 獲得移動軌跡
track_list = get_track(l)
print('第一步,點擊滑動按鈕')
ActionChains(driver).click_and_hold(on_element=element).perform() # 點擊鼠標左鍵,按住不放
time.sleep(1)
print('第二步,拖動元素')
for track in track_list:
ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform() # 鼠標移動到距離當前位置(x,y) time.sleep(0.002)
# if l>100:
ActionChains(driver).move_by_offset(xoffset=-random.randint(2,5), yoffset=0).perform()
time.sleep(1)
print('第三步,釋放鼠標')
ActionChains(driver).release(on_element=element).perform()
time.sleep(5)
def main_check_slider(driver):
"""
檢查滑動按鈕是否加載
:param driver:
:return:
"""
while True:
try :
driver.get('http://www.cnbaowen.net/api/geetest/')
element = WebDriverWait(driver, 30, 0.5).until(EC.element_to_be_clickable((By.CLASS_NAME, 'gt_slider_knob')))
if element:
return element
except TimeoutException as e:
print('超時錯誤,繼續')
time.sleep(5)
if __name__ == '__main__':
try:
count = 6 # 最多識別6次
driver = webdriver.Chrome()
# 等待滑動按鈕加載完成
element = main_check_slider(driver)
while count > 0:
main_check_code(driver,element)
time.sleep(2)
try:
success_element = (By.CSS_SELECTOR, '.gt_holder .gt_ajax_tip.gt_success')
# 得到成功標志
print('suc=',driver.find_element_by_css_selector('.gt_holder .gt_ajax_tip.gt_success'))
success_images = WebDriverWait(driver, 20).until(EC.presence_of_element_located(success_element))
if success_images:
print('成功識別!!!!!!')
count = 0
break
except NoSuchElementException as e:
print('識別錯誤,繼續')
count -= 1
time.sleep(2)
else:
print('too many attempt check code ')
exit('退出程序')
finally:
driver.close()
關于“Python如何破解滑動驗證碼”這篇文章的內容就介紹到這里,感謝各位的閱讀!相信大家對“Python如何破解滑動驗證碼”知識都有一定的了解,大家如果還想學習更多知識,歡迎關注億速云行業資訊頻道。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。