您好,登錄后才能下訂單哦!
這篇文章將為大家詳細講解有關Python破解極驗滑動驗證碼的示例分析,小編覺得挺實用的,因此分享給大家做個參考,希望大家閱讀完這篇文章后可以有所收獲。
以上圖片是最典型的要屬于極驗滑動認證了,極驗官網:http://www.geetest.com/。
現在極驗驗證碼已經更新到了 3.0 版本,截至 2017 年 7 月全球已有十六萬家企業正在使用極驗,每天服務響應超過四億次,廣泛應用于直播視頻、金融服務、電子商務、游戲娛樂、政府企業等各大類型網站
對于這類驗證,如果我們直接模擬表單請求,繁瑣的認證參數與認證流程會讓你蛋碎一地,我們可以用selenium驅動瀏覽器來解決這個問題,大致分為以下幾個步驟
1、輸入用戶名,密碼
2、點擊按鈕驗證,彈出沒有缺口的圖
3、獲得沒有缺口的圖片
4、點擊滑動按鈕,彈出有缺口的圖
5、獲得有缺口的圖片
6、對比兩張圖片,找出缺口,即滑動的位移
7、按照人的行為行為習慣,把總位移切成一段段小的位移
8、按照位移移動
9、完成登錄
位移移動相當于勻變速直線運動,類似于小汽車從起點開始運行到終點的過程(首先為勻加速,然后再勻減速)。
其中a為加速度,且為恒量(即單位時間內的加速度是不變的),t為時間
位移移動的代碼實現
def get_track(distance): ''' 拿到移動軌跡,模仿人的滑動行為,先勻加速后勻減速 勻變速運動基本公式: ①v=v0+at ②s=v0t+(1/2)at² ③v²-v0²=2as :param distance: 需要移動的距離 :return: 存放每0.2秒移動的距離 ''' # 初速度 v=0 # 單位時間為0.2s來統計軌跡,軌跡即0.2內的位移 t=0.1 # 位移/軌跡列表,列表內的一個元素代表0.2s的位移 tracks=[] # 當前的位移 current=0 # 到達mid值開始減速 mid=distance * 4/5 distance += 10 # 先滑過一點,最后再反著滑動回來 while current < distance: if current < mid: # 加速度越小,單位時間的位移越小,模擬的軌跡就越多越詳細 a = 2 # 加速運動 else: a = -3 # 減速運動 # 初速度 v0 = v # 0.2秒時間內的位移 s = v0*t+0.5*a*(t**2) # 當前的位置 current += s # 添加到軌跡列表 tracks.append(round(s)) # 速度已經達到v,該速度作為下次的初速度 v= v0+a*t # 反著滑動到大概準確位置 for i in range(3): tracks.append(-2) for i in range(4): tracks.append(-1) return tracks
def get_distance(image1,image2): ''' 拿到滑動驗證碼需要移動的距離 :param image1:沒有缺口的圖片對象 :param image2:帶缺口的圖片對象 :return:需要移動的距離 ''' # print('size', image1.size) threshold = 50 for i in range(0,image1.size[0]): # 260 for j in range(0,image1.size[1]): # 160 pixel1 = image1.getpixel((i,j)) pixel2 = image2.getpixel((i,j)) res_R = abs(pixel1[0]-pixel2[0]) # 計算RGB差 res_G = abs(pixel1[1] - pixel2[1]) # 計算RGB差 res_B = abs(pixel1[2] - pixel2[2]) # 計算RGB差 if res_R > threshold and res_G > threshold and res_B > threshold: return i # 需要移動的距離
def merge_image(image_file,location_list): """ 拼接圖片 :param image_file: :param location_list: :return: """ im = Image.open(image_file) im.save('code.jpg') new_im = Image.new('RGB',(260,116)) # 把無序的圖片 切成52張小圖片 im_list_upper = [] im_list_down = [] # print(location_list) for location in location_list: # print(location['y']) if location['y'] == -58: # 上半邊 im_list_upper.append(im.crop((abs(location['x']),58,abs(location['x'])+10,116))) if location['y'] == 0: # 下半邊 im_list_down.append(im.crop((abs(location['x']),0,abs(location['x'])+10,58))) x_offset = 0 for im in im_list_upper: new_im.paste(im,(x_offset,0)) # 把小圖片放到 新的空白圖片上 x_offset += im.size[0] x_offset = 0 for im in im_list_down: new_im.paste(im,(x_offset,58)) x_offset += im.size[0] new_im.show() return new_im def get_image(driver,div_path): ''' 下載無序的圖片 然后進行拼接 獲得完整的圖片 :param driver: :param div_path: :return: ''' time.sleep(2) background_images = driver.find_elements_by_xpath(div_path) location_list = [] for background_image in background_images: location = {} result = re.findall('background-image: url\("(.*?)"\); background-position: (.*?)px (.*?)px;',background_image.get_attribute('style')) # print(result) location['x'] = int(result[0][1]) location['y'] = int(result[0][2]) image_url = result[0][0] location_list.append(location) print('==================================') image_url = image_url.replace('webp','jpg') # '替換url http://static.geetest.com/pictures/gt/579066de6/579066de6.webp' image_result = requests.get(image_url).content # with open('1.jpg','wb') as f: # f.write(image_result) image_file = BytesIO(image_result) # 是一張無序的圖片 image = merge_image(image_file,location_list) return image
print('第一步,點擊滑動按鈕') ActionChains(driver).click_and_hold(on_element=element).perform() # 點擊鼠標左鍵,按住不放 time.sleep(1) print('第二步,拖動元素') for track in track_list: ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform() # 鼠標移動到距離當前位置(x,y) if l<100: ActionChains(driver).move_by_offset(xoffset=-2, yoffset=0).perform() else: ActionChains(driver).move_by_offset(xoffset=-5, yoffset=0).perform() time.sleep(1) print('第三步,釋放鼠標') ActionChains(driver).release(on_element=element).perform()
from selenium import webdriver from selenium.webdriver.support.ui import WebDriverWait # 等待元素加載的 from selenium.webdriver.common.action_chains import ActionChains #拖拽 from selenium.webdriver.support import expected_conditions as EC from selenium.common.exceptions import TimeoutException, NoSuchElementException from selenium.webdriver.common.by import By from PIL import Image import requests import time import re import random from io import BytesIO def merge_image(image_file,location_list): """ 拼接圖片 :param image_file: :param location_list: :return: """ im = Image.open(image_file) im.save('code.jpg') new_im = Image.new('RGB',(260,116)) # 把無序的圖片 切成52張小圖片 im_list_upper = [] im_list_down = [] # print(location_list) for location in location_list: # print(location['y']) if location['y'] == -58: # 上半邊 im_list_upper.append(im.crop((abs(location['x']),58,abs(location['x'])+10,116))) if location['y'] == 0: # 下半邊 im_list_down.append(im.crop((abs(location['x']),0,abs(location['x'])+10,58))) x_offset = 0 for im in im_list_upper: new_im.paste(im,(x_offset,0)) # 把小圖片放到 新的空白圖片上 x_offset += im.size[0] x_offset = 0 for im in im_list_down: new_im.paste(im,(x_offset,58)) x_offset += im.size[0] new_im.show() return new_im def get_image(driver,div_path): ''' 下載無序的圖片 然后進行拼接 獲得完整的圖片 :param driver: :param div_path: :return: ''' time.sleep(2) background_images = driver.find_elements_by_xpath(div_path) location_list = [] for background_image in background_images: location = {} result = re.findall('background-image: url\("(.*?)"\); background-position: (.*?)px (.*?)px;',background_image.get_attribute('style')) # print(result) location['x'] = int(result[0][1]) location['y'] = int(result[0][2]) image_url = result[0][0] location_list.append(location) print('==================================') image_url = image_url.replace('webp','jpg') # '替換url http://static.geetest.com/pictures/gt/579066de6/579066de6.webp' image_result = requests.get(image_url).content # with open('1.jpg','wb') as f: # f.write(image_result) image_file = BytesIO(image_result) # 是一張無序的圖片 image = merge_image(image_file,location_list) return image def get_track(distance): ''' 拿到移動軌跡,模仿人的滑動行為,先勻加速后勻減速 勻變速運動基本公式: ①v=v0+at ②s=v0t+(1/2)at² ③v²-v0²=2as :param distance: 需要移動的距離 :return: 存放每0.2秒移動的距離 ''' # 初速度 v=0 # 單位時間為0.2s來統計軌跡,軌跡即0.2內的位移 t=0.2 # 位移/軌跡列表,列表內的一個元素代表0.2s的位移 tracks=[] # 當前的位移 current=0 # 到達mid值開始減速 mid=distance * 7/8 distance += 10 # 先滑過一點,最后再反著滑動回來 # a = random.randint(1,3) while current < distance: if current < mid: # 加速度越小,單位時間的位移越小,模擬的軌跡就越多越詳細 a = random.randint(2,4) # 加速運動 else: a = -random.randint(3,5) # 減速運動 # 初速度 v0 = v # 0.2秒時間內的位移 s = v0*t+0.5*a*(t**2) # 當前的位置 current += s # 添加到軌跡列表 tracks.append(round(s)) # 速度已經達到v,該速度作為下次的初速度 v= v0+a*t # 反著滑動到大概準確位置 for i in range(4): tracks.append(-random.randint(2,3)) for i in range(4): tracks.append(-random.randint(1,3)) return tracks def get_distance(image1,image2): ''' 拿到滑動驗證碼需要移動的距離 :param image1:沒有缺口的圖片對象 :param image2:帶缺口的圖片對象 :return:需要移動的距離 ''' # print('size', image1.size) threshold = 50 for i in range(0,image1.size[0]): # 260 for j in range(0,image1.size[1]): # 160 pixel1 = image1.getpixel((i,j)) pixel2 = image2.getpixel((i,j)) res_R = abs(pixel1[0]-pixel2[0]) # 計算RGB差 res_G = abs(pixel1[1] - pixel2[1]) # 計算RGB差 res_B = abs(pixel1[2] - pixel2[2]) # 計算RGB差 if res_R > threshold and res_G > threshold and res_B > threshold: return i # 需要移動的距離 def main_check_code(driver, element): """ 拖動識別驗證碼 :param driver: :param element: :return: """ image1 = get_image(driver, '//div[@class="gt_cut_bg gt_show"]/div') image2 = get_image(driver, '//div[@class="gt_cut_fullbg gt_show"]/div') # 圖片上 缺口的位置的x坐標 # 2 對比兩張圖片的所有RBG像素點,得到不一樣像素點的x值,即要移動的距離 l = get_distance(image1, image2) print('l=',l) # 3 獲得移動軌跡 track_list = get_track(l) print('第一步,點擊滑動按鈕') ActionChains(driver).click_and_hold(on_element=element).perform() # 點擊鼠標左鍵,按住不放 time.sleep(1) print('第二步,拖動元素') for track in track_list: ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform() # 鼠標移動到距離當前位置(x,y) time.sleep(0.002) # if l>100: ActionChains(driver).move_by_offset(xoffset=-random.randint(2,5), yoffset=0).perform() time.sleep(1) print('第三步,釋放鼠標') ActionChains(driver).release(on_element=element).perform() time.sleep(5) def main_check_slider(driver): """ 檢查滑動按鈕是否加載 :param driver: :return: """ while True: try : driver.get('http://www.cnbaowen.net/api/geetest/') element = WebDriverWait(driver, 30, 0.5).until(EC.element_to_be_clickable((By.CLASS_NAME, 'gt_slider_knob'))) if element: return element except TimeoutException as e: print('超時錯誤,繼續') time.sleep(5) if __name__ == '__main__': try: count = 6 # 最多識別6次 driver = webdriver.Chrome() # 等待滑動按鈕加載完成 element = main_check_slider(driver) while count > 0: main_check_code(driver,element) time.sleep(2) try: success_element = (By.CSS_SELECTOR, '.gt_holder .gt_ajax_tip.gt_success') # 得到成功標志 print('suc=',driver.find_element_by_css_selector('.gt_holder .gt_ajax_tip.gt_success')) success_images = WebDriverWait(driver, 20).until(EC.presence_of_element_located(success_element)) if success_images: print('成功識別!!!!!!') count = 0 break except NoSuchElementException as e: print('識別錯誤,繼續') count -= 1 time.sleep(2) else: print('too many attempt check code ') exit('退出程序') finally: driver.close()
成功識別標志css
Python是一種編程語言,內置了許多有效的工具,Python幾乎無所不能,該語言通俗易懂、容易入門、功能強大,在許多領域中都有廣泛的應用,例如最熱門的大數據分析,人工智能,Web開發等。
關于“Python破解極驗滑動驗證碼的示例分析”這篇文章就分享到這里了,希望以上內容可以對大家有一定的幫助,使各位可以學到更多知識,如果覺得文章不錯,請把它分享出去讓更多的人看到。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。