91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

如何通過Tensorflow搭建一個神經網絡

發布時間:2022-03-01 11:03:21 來源:億速云 閱讀:144 作者:iii 欄目:開發技術

今天小編給大家分享一下如何通過Tensorflow搭建一個神經網絡的相關知識點,內容詳細,邏輯清晰,相信大部分人都還太了解這方面的知識,所以分享這篇文章給大家參考一下,希望大家閱讀完這篇文章后有所收獲,下面我們一起來了解一下吧。

一、Tensorlow結構

import tensorflow as tf
import numpy as np
 
#創建數據
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data*0.1+0.3
 
#創建一個 tensorlow 結構
weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0))#一維,范圍[-1,1]
biases = tf.Variable(tf.zeros([1]))
 
y = weights*x_data + biases
 
loss = tf.reduce_mean(tf.square(y - y_data))#均方差函數
 
#建立優化器,減少誤差,提高參數準確度,每次迭代都會優化
optimizer = tf.train.GradientDescentOptimizer(0.5)#學習率為0.5(<1)
train = optimizer.minimize(loss)#最小化損失函數
 
#初始化不變量
init = tf.global_variables_initializer()
 
with tf.Session() as sess:
    sess.run(init)
    #train
    for step in range(201):
        sess.run(train)
        if step % 20 == 0:
            print(step, sess.run(weights), sess.run(biases))

二、session的使用

import tensorflow as tf
 
matrix1 = tf.constant([[3, 3]])
matrix2 = tf.constant([[2], [2]])
 
product = tf.matmul(matrix1, matrix2)
 
#method1
sess = tf.Session()
result2 = sess.run(product)
print(result2)
 
#method2
# with tf.Session() as sess:
#     result2 = sess.run(product)
#     print(result2)

三、Variable的使用

import tensorflow as tf
 
state = tf.Variable(0, name = 'counter')#變量初始化
# print(state.name)
one = tf.constant(1)
new_value = tf.add(state, one)
#將state用new_value代替
updata = tf.assign(state, new_value)
 
#變量激活
init = tf.global_variables_initializer()
 
with tf.Session() as sess:
    sess.run(init)
    for _ in range(3):
        sess.run(updata)
        print(sess.run(state))

四、placeholder的使用

#給定type,tf大部分只能處理float32數據
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
 
output = tf.multiply(input1, input2)
 
with tf.Session() as sess:
    print(sess.run(output, feed_dict={input1:[7.], input2:[2.]}))

五、激活函數 六、添加層

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
 
def add_layer(inputs, in_size, out_size, activation_function = None):
    Weights = tf.Variable(tf.random_normal([in_size, out_size]))#正態分布
    biases = tf.Variable(tf.zeros([1, out_size])+0.1) #1行,out_size列,初始值不推薦為0,所以加上0.1
    Wx_plus_b = tf.matmul(inputs, Weights) + biases #Weights*x+b的初始化值,也是未激活的值
 
    #激活
 
    if activation_function is None:
        #如果沒有設置激活函數,,則直接把當前信號原封不動的傳遞出去
        outputs = Wx_plus_b
    else:
        #如果設置了激活函數,則由此激活函數對信號進行傳遞或抑制
        outputs = activation_function(Wx_plus_b)
    return outputs

七、創建一個神經網絡

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
 
def add_layer(inputs, in_size, out_size, activation_function = None):
    Weights = tf.Variable(tf.random_normal([in_size, out_size]))#正態分布
    biases = tf.Variable(tf.zeros([1, out_size])+0.1) #1行,out_size列,初始值不推薦為0,所以加上0.1
    Wx_plus_b = tf.matmul(inputs, Weights) + biases #Weights*x+b的初始化值,也是未激活的值
 
    #激活
 
    if activation_function is None:
        #如果沒有設置激活函數,,則直接把當前信號原封不動的傳遞出去
        outputs = Wx_plus_b
    else:
        #如果設置了激活函數,則由此激活函數對信號進行傳遞或抑制
        outputs = activation_function(Wx_plus_b)
    return outputs
 
"""定義數據形式"""
#創建一列(相當于只有一個屬性值),(-1,1)之間,有300個單位,后面是維度,x_data是有300行
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]#np.linspace在指定間隔內返回均勻間隔數字
#加入噪聲,均值為0,方差為0.05,形狀和x_data一樣
noise = np.random.normal(0, 0.05, x_data.shape)
#定義y的函數為二次曲線函數,同時增加一些噪聲數據
y_data = np.square(x_data) - 0.5 + noise
 
#定義輸入值,輸入結構的輸入行數不固定,但列就是1列的值
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
 
"""建立網絡"""
#定義隱藏層,輸入為xs,輸入size為1列,因為x_data只有一個屬性值,輸出size假定有10個神經元的隱藏層,激活函數relu
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
#定義輸出層,輸出為l1輸入size為10列,也就是l1的列數,輸出size為1,這里的輸出類似y_data,因此為1列
prediction = add_layer(l1, 10, 1,activation_function=None)
 
"""預測"""
#定義損失函數為差值平方和的平均值
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1]))
 
"""訓練"""
#進行逐步優化的梯度下降優化器,學習率為0.1,以最小化損失函數進行優化
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
#初始化模型所有參數
init = tf.global_variables_initializer()
 
#可視化
with tf.Session() as sess:
    sess.run(init)
 
    for i in range(1000):#學習1000次
        sess.run(train_step, feed_dict={xs:x_data, ys:y_data})
        if i%50==0:
            print(sess.run(loss, feed_dict={xs:x_data, ys:y_data}))

八、可視化

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
 
def add_layer(inputs, in_size, out_size, activation_function = None):
    Weights = tf.Variable(tf.random_normal([in_size, out_size]))#正態分布
    biases = tf.Variable(tf.zeros([1, out_size])+0.1) #1行,out_size列,初始值不推薦為0,所以加上0.1
    Wx_plus_b = tf.matmul(inputs, Weights) + biases #Weights*x+b的初始化值,也是未激活的值
 
    #激活
 
    if activation_function is None:
        #如果沒有設置激活函數,,則直接把當前信號原封不動的傳遞出去
        outputs = Wx_plus_b
    else:
        #如果設置了激活函數,則由此激活函數對信號進行傳遞或抑制
        outputs = activation_function(Wx_plus_b)
    return outputs
 
"""定義數據形式"""
#創建一列(相當于只有一個屬性值),(-1,1)之間,有300個單位,后面是維度,x_data是有300行
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]#np.linspace在指定間隔內返回均勻間隔數字
#加入噪聲,均值為0,方差為0.05,形狀和x_data一樣
noise = np.random.normal(0, 0.05, x_data.shape)
#定義y的函數為二次曲線函數,同時增加一些噪聲數據
y_data = np.square(x_data) - 0.5 + noise
 
#定義輸入值,輸入結構的輸入行數不固定,但列就是1列的值
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
 
"""建立網絡"""
#定義隱藏層,輸入為xs,輸入size為1列,因為x_data只有一個屬性值,輸出size假定有10個神經元的隱藏層,激活函數relu
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
#定義輸出層,輸出為l1輸入size為10列,也就是l1的列數,輸出size為1,這里的輸出類似y_data,因此為1列
prediction = add_layer(l1, 10, 1,activation_function=None)
 
"""預測"""
#定義損失函數為差值平方和的平均值
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1]))
 
"""訓練"""
#進行逐步優化的梯度下降優化器,學習率為0.1,以最小化損失函數進行優化
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
#初始化模型所有參數
init = tf.global_variables_initializer()
 
#可視化
with tf.Session() as sess:
    sess.run(init)
 
    fig = plt.figure()#先生成一個圖片框
    #連續性畫圖
    ax = fig.add_subplot(1, 1, 1)#編號為1,1,1
    ax.scatter(x_data, y_data)#畫散點圖
    #不暫停
    plt.ion()#打開互交模式
    # plt.show()
    #plt.show繪制一次就暫停了
    for i in range(1000):#學習1000次
        sess.run(train_step, feed_dict={xs:x_data, ys:y_data})
        if i%50==0:
 
 
            try:
                #畫出一條后,抹除掉,去除第一個線段,但是只有一個相當于抹除當前線段
                ax.lines.remove(lines[0])
            except Exception:
                pass
            prediction_value = sess.run(prediction, feed_dict={xs:x_data})
            lines = ax.plot(x_data,prediction_value,'r-',lw=5)#lw線寬
 
            #暫停
            plt.pause(0.5)

以上就是“如何通過Tensorflow搭建一個神經網絡”這篇文章的所有內容,感謝各位的閱讀!相信大家閱讀完這篇文章都有很大的收獲,小編每天都會為大家更新不同的知識,如果還想學習更多的知識,請關注億速云行業資訊頻道。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

九台市| 康乐县| 卓资县| 皮山县| 金乡县| 海林市| 怀安县| 阿拉尔市| 郸城县| 牡丹江市| 喜德县| 灌云县| 育儿| 西平县| 余庆县| 沿河| 临城县| 灌南县| 桐乡市| 石棉县| 丰都县| 陆丰市| 绥阳县| 县级市| 宁南县| 慈利县| 聊城市| 拜泉县| 天台县| 栾城县| 楚雄市| 茌平县| 遵化市| 大英县| 林甸县| 九寨沟县| 潍坊市| 隆化县| 资溪县| 布拖县| 安达市|