您好,登錄后才能下訂單哦!
這期內容當中小編將會給大家帶來有關Python 概率生成問題的示例分析,文章內容豐富且以專業的角度為大家分析和敘述,閱讀完這篇文章希望大家可以有所收獲。
有一枚不均勻的硬幣,要求產生均勻的概率分布 有一枚均勻的硬幣,要求產生不均勻的概率分布,如 0.25 和 0.75 利用 Rand7() 實現 Rand10()
現有一枚不均勻的硬幣 coin(),能夠返回 0、1 兩個值,其概率分別為 0.6、0.4。要求使用這枚硬幣,產生均勻的概率分布。即編寫一個函數 coin_new() 使得它返回 0、1 的概率均為 0.5。
# 不均勻硬幣,返回 0、1 的概率分別為 0.6、0.4 def coin(): return 0 if random.randint(1,10) > 4 else 1
統計拋兩次硬幣的結果的概率分布:
結果 0 1
0 0.60.6=0.36 0.60.4=0.24
1 0.40.6=0.24 0.40.4=0.16
連續拋兩枚硬幣得到 0 1 和 1 0 的概率分布是相同的。因此這道題的解法就是連續拋兩次硬幣,如果得到 0 1,返回 0;如果得到 1 0,返回 1;如果兩次結果相同,則重新拋。
以此類推,無論這枚不均勻硬幣的概率是多少,都可以用這種方法得到等概率的結果。
ddef coin_new(): while True: a = coin() if coin() != a: return a
完整測試代碼:
def coin(): return 0 if random.randint(1,10) > 4 else 1 def coin_new(): while True: a = coin() if coin() != a: return a if __name__ == '__main__': a = 0 b = 0 n = 100000 for _ in range(n): if coin_new():a += 1 if coin():b += 1 print(f"1:{a/n},1:{b/n}")
現有一枚均勻的硬幣 coin(),能夠返回 0、1 兩個值,其概率均為 0.5。要求編寫一個函數 coin_new(),使得它返回指定的 0、1 概率分布。
# 均勻硬幣 def coin(): return random.randint(0,1)
P(0) = 1/4,P(1) = 3/4
對于均勻硬幣而言,連續拋兩次,得到 0 0、0 1、1 0、1 1 的概率均為 1/4。顯然,只需要連續拋兩次硬幣,如果得到 0 0,返回 0,其他情況返回 1。
def coin_new(): return coin() or coin()
P(0) = 1/3,P(1) = 2/3
連續拋兩次硬幣。如果得到 1 1,返回 0;如果得到 1 0 或 0 1,返回 1;如果得到 0 0,繼續拋硬幣。
def coin_new(): while True: a, b = coin(), coin() if a & b: return 0 if a | b: return 1
P(0) = 0.3,P(1) = 0.7
每拋一次硬幣,會得到二進制數的一位,連續拋 4 次硬幣,可以等概率生成 [0, 15] 的每個數,記為 x。去掉 [10, 15],剩下 [0, 9] 的每個數依然是等概率的。如果 x ∈ [ 0 , 2 ] x \in [0, 2] x∈[0,2],返回 0; x ∈ [ 4 , 9 ] x \in [4, 9] x∈[4,9],返回 1; x ≥ 10 x ≥ 10 x≥10,重復上述過程。
def coin_new(): while True: x = 0 for _ in range(4): x = (x << 1) + coin() if x <= 2: return 0 if x <= 9: return 1
每拋一次硬幣,會得到二進制數的一位,連續拋 k 次硬幣,可以等概率生成 [ 0 , 2 k ? 1 ] [0, 2^k-1] [0,2k?1] 的每個數在 [ 0 , 2 k ? 1 ] [0, 2^k-1] [0,2k?1][ 中,選取 m 個數返回 0,n 個數返回 1,則 0、1 的概率分別為 m m + n \frac{m}{m+n} m+nm 、 n m + n \frac{n}{m+n} m+nn。
關于 k 的選擇,最少需要滿足 N < = 2 k ? 1 N <= 2^k-1 N<=2k?1,N 是生成對應概率分布至少需要多少個不同數字。比如要生成 1/3、2/3 的分布,至少需要 3 個不同數字,則 N = 3, k = 2;要生成 3/10、7/10 的分布,至少需要 10 個數字,則 N = 10, k = 4。
k 最多則沒有限制,我們總可以通過拋更多次硬幣來解決問題,只需要把無用的數字舍棄即可。但我們的目的是盡可能減少無用數字的比例,因為每次遇到無用數字時,都需要重新生成新的數字。
已有方法 Rand7() 可生成 1 到 7 范圍內的均勻隨機整數,試寫一個方法 Rand10() 生成 1 到 10 范圍內的均勻隨機整數。
拋硬幣可以看作是 Rand2(),均勻生成 0、1 兩個整數。如何根據 Rand2() 生成 Rand10()?將每次拋硬幣的結果,看作二進制的每一位,就可以得到 [ 0 , 2 k ? 1 ] [0, 2^k-1] [0,2k?1] 范圍內的均勻隨機整數。只需要拋 4 次硬幣,就能得到 [0, 15] 范圍的整數。返回 [1, 10] 范圍的整數,其他情況則重新拋硬幣。
def rand10(): while True: x = 0 for _ in range(4): x = x << 1 + rand2() if 1 <= x <= 10: return x
取 Rand7() - 1 作為對應的 7 進制位。每執行 k 次 Rand7(),將得到一個 k 位的 7 進制整數,在 [ 0 , 7 k ? 1 ] [0, 7^k-1] [0,7k?1] 范圍內均勻分布。
只需執行 k = 2 次 Rand7(),就可以得到范圍為 [0, 48] 的均勻整數:
當 x ∈ [ 1 , 10 ] x \in [1, 10] x∈[1,10] 時返回 x,否則重新計算:
def rand10(): while True: x = (rand7() - 1) * 7 + (rand7() - 1); if 1 <= x <= 10: return x
選擇 [1, 40] 范圍里的數,通過取余運算來得到 [1, 10] 范圍的數:
def rand10(): while True: x = (rand7() - 1) * 7 + (rand7() - 1) if 1 <= x <= 40: return x % 10 + 1
對于上面這 9 個無用數字,計算 x % 40 可以得到 [0, 8] 范圍的均勻隨機整數。此時再調用一次 Rand7(),計算 (x % 40) * 7 + Rand7(),這相當于 Rand9() * 7 + Rand7()。顯然,可以得到 [1, 63] 范圍的均勻隨機整數。這時 [1, 60] 范圍里的數都可以用來作取余運算,只有 61、62、63 共 3 個無用數字:
def rand10(): while True: x = (rand7() - 1) * 7 + (rand7() - 1) if 1 <= x <= 40: return x % 10 + 1 x = (x % 40) * 7 + rand7() # 1~63 if x <= 60: return x % 10 + 1
對于 61、62、63,再調用一次 Rand7(),計算 (x - 61) * 7 + Rand7(),相當于 Rand3() * 7 + Rand7(),可以得到 [1, 21] 范圍的均勻隨機整數,這時再作取余運算,只有 1 個無用數字(21):
def rand10(): while True: x = (rand7() - 1) * 7 + (rand7() - 1) if 1 <= x <= 40: return x % 10 + 1 x = (x % 40) * 7 + rand7() # 1~63 if x <= 60: return x % 10 + 1 x = (x - 61) * 7 + 7 # 1~21 if x <= 20: return x % 10 + 1
每次 while 執行的時候,只有 1 個無用數字(21)會被舍棄,重新執行的概率很低。
已知 RandM() 可以等概率的生成 [0, M-1] 范圍的隨機整數,那么執行 k 次,每次都得到 M 進制的一位,可以等概率生成 [ 0 , M k ? 1 ] [0, M^k-1] [0,Mk?1] 范圍的隨機整數,記為 x。
RandN 至少需要 N 個均勻隨機整數,因此只需要取 k,使得 M k ? 1 > = N M^k-1 >= N Mk?1>=N 即可,此時有多種方式得到 RandN:
一種是只在 x ∈ [ 0 , N ? 1 ] x \in [0, N-1] x∈[0,N?1] 時返回 x,另一種是利用取余運算,在保證等概率的前提下,盡可能多的利用生成的數字,從而減少舍棄的數字比例,降低 while 重復執行的概率。
上述就是小編為大家分享的Python 概率生成問題的示例分析了,如果剛好有類似的疑惑,不妨參照上述分析進行理解。如果想知道更多相關知識,歡迎關注億速云行業資訊頻道。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。