您好,登錄后才能下訂單哦!
這篇文章主要介紹了Python中特征降維的示例分析,具有一定借鑒價值,感興趣的朋友可以參考下,希望大家閱讀完這篇文章之后大有收獲,下面讓小編帶著大家一起了解一下。
說明
1、PCA是最經典、最實用的降維技術,尤其在輔助圖形識別中表現突出。
2、用來減少數據集的維度,同時保持數據集中對方差貢獻最大的特征。
保持低階主成分,而忽略高階成分,低階成分往往能保留數據的最重要部分。
實例
from sklearn.feature_selection import VarianceThreshold # 特征選擇 VarianceThreshold刪除低方差的特征(刪除差別不大的特征) var = VarianceThreshold(threshold=1.0) # 將方差小于等于1.0的特征刪除。 默認threshold=0.0 data = var.fit_transform([[0, 2, 0, 3], [0, 1, 4, 3], [0, 1, 1, 3]]) print(data) ''' [[0] [4] [1]] '''
感謝你能夠認真閱讀完這篇文章,希望小編分享的“Python中特征降維的示例分析”這篇文章對大家有幫助,同時也希望大家多多支持億速云,關注億速云行業資訊頻道,更多相關知識等著你來學習!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。