您好,登錄后才能下訂單哦!
本篇內容介紹了“Python的特征降維是什么意思”的有關知識,在實際案例的操作過程中,不少人都會遇到這樣的困境,接下來就讓小編帶領大家學習一下如何處理這些情況吧!希望大家仔細閱讀,能夠學有所成!
1、PCA是最經典、最實用的降維技術,尤其在輔助圖形識別中表現突出。
2、用來減少數據集的維度,同時保持數據集中對方差貢獻最大的特征。
保持低階主成分,而忽略高階成分,低階成分往往能保留數據的最重要部分。
from sklearn.feature_selection import VarianceThreshold # 特征選擇 VarianceThreshold刪除低方差的特征(刪除差別不大的特征) var = VarianceThreshold(threshold=1.0) # 將方差小于等于1.0的特征刪除。 默認threshold=0.0 data = var.fit_transform([[0, 2, 0, 3], [0, 1, 4, 3], [0, 1, 1, 3]]) print(data) ''' [[0] [4] [1]] '''
內容擴展:
python實現拉普拉斯降維
def laplaEigen(dataMat,k,t): m,n=shape(dataMat) W=mat(zeros([m,m])) D=mat(zeros([m,m])) for i in range(m): k_index=knn(dataMat[i,:],dataMat,k) for j in range(k): sqDiffVector = dataMat[i,:]-dataMat[k_index[j],:] sqDiffVector=array(sqDiffVector)**2 sqDistances = sqDiffVector.sum() W[i,k_index[j]]=math.exp(-sqDistances/t) D[i,i]+=W[i,k_index[j]] L=D-W Dinv=np.linalg.inv(D) X=np.dot(D.I,L) lamda,f=np.linalg.eig(X) return lamda,f def knn(inX, dataSet, k): dataSetSize = dataSet.shape[0] diffMat = tile(inX, (dataSetSize,1)) - dataSet sqDiffMat = array(diffMat)**2 sqDistances = sqDiffMat.sum(axis=1) distances = sqDistances**0.5 sortedDistIndicies = distances.argsort() return sortedDistIndicies[0:k] dataMat, color = make_swiss_roll(n_samples=2000) lamda,f=laplaEigen(dataMat,11,5.0) fm,fn =shape(f) print 'fm,fn:',fm,fn lamdaIndicies = argsort(lamda) first=0 second=0 print lamdaIndicies[0], lamdaIndicies[1] for i in range(fm): if lamda[lamdaIndicies[i]].real>1e-5: print lamda[lamdaIndicies[i]] first=lamdaIndicies[i] second=lamdaIndicies[i+1] break print first, second redEigVects = f[:,lamdaIndicies] fig=plt.figure('origin') ax1 = fig.add_subplot(111, projection='3d') ax1.scatter(dataMat[:, 0], dataMat[:, 1], dataMat[:, 2], c=color,cmap=plt.cm.Spectral) fig=plt.figure('lowdata') ax2 = fig.add_subplot(111) ax2.scatter(f[:,first], f[:,second], c=color, cmap=plt.cm.Spectral) plt.show()
“Python的特征降維是什么意思”的內容就介紹到這里了,感謝大家的閱讀。如果想了解更多行業相關的知識可以關注億速云網站,小編將為大家輸出更多高質量的實用文章!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。