您好,登錄后才能下訂單哦!
本篇內容主要講解“Java代碼性能優化的細節有哪些”,感興趣的朋友不妨來看看。本文介紹的方法操作簡單快捷,實用性強。下面就讓小編來帶大家學習“Java代碼性能優化的細節有哪些”吧!
使用單例可以減輕加載的負擔,縮短加載的時間,提高加載的效率,但并不是所有地方都適用于單例,簡單來說,單例主要適用于以下三個方面:
控制資源的使用,通過線程同步來控制資源的并發訪問;
控制實例的產生,以達到節約資源的目的;
控制數據共享,在不建立直接關聯的條件下,讓多個不相關的進程或線程之間實現通信。整理了一份Java面試寶典完整版PDF
當某個對象被定義為static變量所引用,那么GC通常是不會回收這個對象所占有的內存,如
public class A { private static B b = new B(); }
此時靜態變量b的生命周期與A類同步,如果A類不會卸載,那么b對象會常駐內存,直到程序終止。
盡量避免在經常調用的方法,循環中new對象,由于系統不僅要花費時間來創建對象,而且還要花時間對這些對象進行垃圾回收和處理,在我們可以控制的范圍內,最大限度地重用對象,最好能用基本的數據類型或數組來替代對象。
帶有final修飾符的類是不可派生的。在JAVA核心API中,有許多應用final的例子,例如java、lang、String,為String類指定final防止了使用者覆蓋length()方法。另外,如果一個類是final的,則該類所有方法都是final的。java編譯器會尋找機會內聯(inline)所有的final方法(這和具體的編譯器實現有關),此舉能夠使性能平均提高50%。
如:讓訪問實例內變量的getter/setter方法變成”final:
簡單的getter/setter方法應該被置成final,這會告訴編譯器,這個方法不會被重載,所以,可以變成”inlined”,例子:
class MAF { public void setSize (int size) { _size = size; } private int _size; }
更正
class DAF_fixed { final public void setSize (int size) { _size = size; } private int _size; }
調用方法時傳遞的參數以及在調用中創建的臨時變量都保存在棧(Stack)中,速度較快;其他變量,如靜態變量、實例變量等,都在堆(Heap)中創建,速度較慢。
雖然包裝類型和基本類型在使用過程中是可以相互轉換,但它們兩者所產生的內存區域是完全不同的,基本類型數據產生和處理都在棧中處理,包裝類型是對象,是在堆中產生實例。在集合類對象,有對象方面需要的處理適用包裝類型,其他的處理提倡使用基本類型。
都知道,實現同步是要很大的系統開銷作為代價的,甚至可能造成死鎖,所以盡量避免無謂的同步控制。synchronize方法被調用時,直接會把當前對象鎖了,在方法執行完之前其他線程無法調用當前對象的其他方法。所以,synchronize的方法盡量減小,并且應盡量使用方法同步代替代碼塊同步。
實際上,將資源清理放在finalize方法中完成是非常不好的選擇,由于GC的工作量很大,尤其是回收Young代內存時,大都會引起應用程序暫停,所以再選擇使用finalize方法進行資源清理,會導致GC負擔更大,程序運行效率更差。
String str = "hello";
上面這種方式會創建一個“hello”字符串,而且JVM的字符緩存池還會緩存這個字符串;
String str = new String("hello");
此時程序除創建字符串外,str所引用的String對象底層還包含一個char[]數組,這個char[]數組依次存放了h,e,l,l,o
HashTable、Vector等使用了同步機制,降低了性能。
當你要創建一個比較大的hashMap時,充分利用這個構造函數
public HashMap(int initialCapacity, float loadFactor);
避免HashMap多次進行了hash重構,擴容是一件很耗費性能的事,在默認中initialCapacity只有16,而loadFactor是 0.75,需要多大的容量,你最好能準確的估計你所需要的最佳大小,同樣的Hashtable,Vectors也是一樣的道理。
如:
for(int i=0;i<list.size();i++)
應該改為:
for(int i=0,len=list.size();i<len;i++)
并且在循環中應該避免使用復雜的表達式,在循環中,循環條件會被反復計算,如果不使用復雜表達式,而使循環條件值不變的話,程序將會運行的更快。
如:
A a = new A(); if(i==1){ list.add(a); }
應該改為:
if(i==1){ A a = new A(); list.add(a); }
程序中使用到的資源應當被釋放,以避免資源泄漏,這最好在finally塊中去做。不管程序執行的結果如何,finally塊總是會執行的,以確保資源的正確關閉。
"/"是一個代價很高的操作,使用移位的操作將會更快和更有效
如:
int num = a / 4; int num = a / 8;
應該改為:
int num = a >> 2; int num = a >> 3;
但注意的是使用移位應添加注釋,因為移位操作不直觀,比較難理解。
同樣的,對于'*'操作,使用移位的操作將會更快和更有效
如:
int num = a * 4; int num = a * 8;
應該改為:
int num = a << 2; int num = a << 3;
StringBuffer 的構造器會創建一個默認大小(通常是16)的字符數組。在使用中,如果超出這個大小,就會重新分配內存,創建一個更大的數組,并將原先的數組復制過來,再丟棄舊的數組。在大多數情況下,你可以在創建 StringBuffer的時候指定大小,這樣就避免了在容量不夠的時候自動增長,以提高性能。
如:
StringBuffer buffer = new StringBuffer(1000);
二維數據占用的內存空間比一維數組多得多,大概10倍以上。
除非是必須的,否則應該避免使用split,split由于支持正則表達式,所以效率比較低,如果是頻繁的幾十,幾百萬的調用將會耗費大量資源,如果確實需要頻繁的調用split,可以考慮使用apache的StringUtils.split(string,char),頻繁split的可以緩存結果。
一個是線性表,一個是鏈表,一句話,隨機查詢盡量使用ArrayList,ArrayList優于LinkedList,LinkedList還要移動指針,添加刪除的操作LinkedList優于ArrayList,ArrayList還要移動數據,不過這是理論性分析,事實未必如此,重要的是理解好2者得數據結構,對癥下藥。
System.arraycopy() 要比通過循環來復制數組快的多。
盡可能將經常使用的對象進行緩存,可以使用數組,或HashMap的容器來進行緩存,但這種方式可能導致系統占用過多的緩存,性能下降,推薦可以使用一些第三方的開源工具,如EhCache,Oscache進行緩存,他們基本都實現了FIFO/FLU等緩存算法。
有時候問題不是由當時的堆狀態造成的,而是因為分配失敗造成的。分配的內存塊都必須是連續的,而隨著堆越來越滿,找到較大的連續塊越來越困難。
當創建一個異常時,需要收集一個棧跟蹤(stack track),這個棧跟蹤用于描述異常是在何處創建的。構建這些棧跟蹤時需要為運行時棧做一份快照,正是這一部分開銷很大。當需要創建一個 Exception 時,JVM 不得不說:先別動,我想就您現在的樣子存一份快照,所以暫時停止入棧和出棧操作。棧跟蹤不只包含運行時棧中的一兩個元素,而是包含這個棧中的每一個元素。
如果您創建一個 Exception ,就得付出代價,好在捕獲異常開銷不大,因此可以使用 try-catch 將核心內容包起來。從技術上講,你甚至可以隨意地拋出異常,而不用花費很大的代價。招致性能損失的并不是 throw 操作——盡管在沒有預先創建異常的情況下就拋出異常是有點不尋常。真正要花代價的是創建異常,幸運的是,好的編程習慣已教會我們,不應該不管三七二十一就拋出異常。異常是為異常的情況而設計的,使用時也應該牢記這一原則。
特別是String對象的使用中,出現字符串連接情況時應使用StringBuffer代替,由于系統不僅要花時間生成對象,以后可能還需要花時間對這些對象進行垃圾回收和處理。因此生成過多的對象將會給程序的性能帶來很大的影響。
默認情況下,調用類的構造函數時,java會把變量初始化成確定的值,所有的對象被設置成null,整數變量設置成0,float和double變量設置成0.0,邏輯值設置成false。當一個類從另一個類派生時,這一點尤其應該注意,因為用new關鍵字創建一個對象時,構造函數鏈中的所有構造函數都會被自動調用。
這里有個注意,給成員變量設置初始值但需要調用其他方法的時候,最好放在一個方法。比如initXXX()中,因為直接調用某方法賦值可能會因為類尚未初始化而拋空指針異常,如:public int state = this.getState()。
在java編程過程中,進行數據庫連接,I/O流操作,在使用完畢后,及時關閉以釋放資源。因為對這些大對象的操作會造成系統大的開銷。
Error是獲取系統錯誤的類,或者說是虛擬機錯誤的類。不是所有的錯誤Exception都能獲取到的,虛擬機報錯Exception就獲取不到,必須用Error獲取。
可以明顯提升性能
StringBuffer的默認容量為16,當StringBuffer的容量達到最大容量時,它會將自身容量增加到當前的2倍+2,也就是2*n+2。無論何時,只要StringBuffer到達它的最大容量,它就不得不創建一個新的對象數組,然后復制舊的對象數組,這會浪費很多時間。所以給StringBuffer設置一個合理的初始化容量值,是很有必要的!
Map<String, String[]> paraMap = new HashMap<String, String[]>(); for( Entry<String, String[]> entry : paraMap.entrySet() ) { String appFieldDefId = entry.getKey(); String[] values = entry.getValue(); }
利用散列值取出相應的Entry做比較得到結果,取得entry的值之后直接取key和value。
array 數組效率最高,但容量固定,無法動態改變,ArrayList容量可以動態增長,但犧牲了效率。
除非必要,否則不推薦使用HashTable,Vector,它們使用了同步機制,而降低了性能。
java.lang.StringBuffer 線程安全的可變字符序列。一個類似于String的字符串緩沖區,但不能修改。StringBuilder與該類相比,通常應該優先使用StringBuilder類,因為它支持所有相同的操作,但由于它不執行同步,所以速度更快。為了獲得更好的性能,在構造StringBuffer或StringBuilder時應盡量指定她的容量。當然如果不超過16個字符時就不用了。相同情況下,使用StringBuilder比使用StringBuffer僅能獲得10%~15%的性能提升,但卻要冒多線程不安全的風險。綜合考慮還是建議使用StringBuffer。
以下舉幾個實用優化的例子:
一、避免在循環條件中使用復雜表達式
在不做編譯優化的情況下,在循環中,循環條件會被反復計算,如果不使用復雜表達式,而使循環條件值不變的話,程序將會運行的更快。例子:
import java.util.Vector; class CEL { void method (Vector vector) { for (int i = 0; i < vector.size (); i++) // Violation ; // ... } } }
更正:
class CEL_fixed { void method (Vector vector) { int size = vector.size () for (int i = 0; i < size; i++) ; // ... } }
二、為'Vectors' 和 'Hashtables'定義初始大小
JVM為Vector擴充大小的時候需要重新創建一個更大的數組,將原原先數組中的內容復制過來,最后,原先的數組再被回收。可見Vector容量的擴大是一個頗費時間的事。
通常,默認的10個元素大小是不夠的。你最好能準確的估計你所需要的最佳大小。例子:
import java.util.Vector; public class DIC { public void addObjects (Object[] o) { // if length > 10, Vector needs to expand for (int i = 0; i< o.length;i++) { v.add(o); // capacity before it can add more elements. } } public Vector v = new Vector(); // no initialCapacity. }
更正:
自己設定初始大小。
public Vector v = new Vector(20); public Hashtable hash = new Hashtable(10);
三、在finally塊中關閉Stream
程序中使用到的資源應當被釋放,以避免資源泄漏。這最好在finally塊中去做。不管程序執行的結果如何,finally塊總是會執行的,以確保資源的正確關閉。
四、使用'System.arraycopy ()'代替通過來循環復制數組
例子:
public class IRB { void method () { int[] array1 = new int [100]; for (int i = 0; i < array1.length; i++) { array1 [i] = i; } int[] array2 = new int [100]; for (int i = 0; i < array2.length; i++) { array2 [i] = array1 [i]; // Violation } } }
更正:
public class IRB { void method () { int[] array1 = new int [100]; for (int i = 0; i < array1.length; i++) { array1 [i] = i; } int[] array2 = new int [100]; System.arraycopy(array1, 0, array2, 0, 100); } }
五、讓訪問實例內變量的getter/setter方法變成”final”
簡單的getter/setter方法應該被置成final,這會告訴編譯器,這個方法不會被重載,所以,可以變成”inlined”,例子:
class MAF { public void setSize (int size) { _size = size; } private int _size; }
更正:
class DAF_fixed { final public void setSize (int size) { _size = size; } private int _size; }
六、對于常量字符串,用'String' 代替 'StringBuffer'
常量字符串并不需要動態改變長度。
例子:
public class USC { String method () { StringBuffer s = new StringBuffer ("Hello"); String t = s + "World!"; return t; } }
更正:把StringBuffer換成String,如果確定這個String不會再變的話,這將會減少運行開銷提高性能。
七、在字符串相加的時候,使用 ' ' 代替 " ",如果該字符串只有一個字符的話
例子:
public class STR { public void method(String s) { String string = s + "d" // violation. string = "abc" + "d" // violation. } }
更正:
將一個字符的字符串替換成' '
public class STR { public void method(String s) { String string = s + 'd' string = "abc" + 'd' } }
到此,相信大家對“Java代碼性能優化的細節有哪些”有了更深的了解,不妨來實際操作一番吧!這里是億速云網站,更多相關內容可以進入相關頻道進行查詢,關注我們,繼續學習!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。