91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

使用Pytorch怎么實現半精度浮點型網絡訓練

發布時間:2021-05-24 15:19:38 來源:億速云 閱讀:673 作者:Leah 欄目:開發技術

今天就跟大家聊聊有關使用Pytorch怎么實現半精度浮點型網絡訓練,可能很多人都不太了解,為了讓大家更加了解,小編給大家總結了以下內容,希望大家根據這篇文章可以有所收獲。

用Pytorch2.0進行半精度浮點型網絡訓練需要注意下問題:

1、網絡要在GPU上跑,模型和輸入樣本數據都要cuda().half()

2、模型參數轉換為half型,不必索引到每層,直接model.cuda().half()即可

3、對于半精度模型,優化算法,Adam我在使用過程中,在某些參數的梯度為0的時候,更新權重后,梯度為零的權重變成了NAN,這非常奇怪,但是Adam算法對于全精度數據類型卻沒有這個問題。

另外,SGD算法對于半精度和全精度計算均沒有問題。

還有一個問題是不知道是不是網絡結構比較小的原因,使用半精度的訓練速度還沒有全精度快。這個值得后續進一步探索。

對于上面的這個問題,的確是網絡很小的情況下,在1080Ti上半精度浮點型沒有很明顯的優勢,但是當網絡變大之后,半精度浮點型要比全精度浮點型要快。

但具體快多少和模型的大小以及輸入樣本大小有關系,我測試的是要快1/6,同時,半精度浮點型在占用內存上比較有優勢,對于精度的影響尚未探究。

將網絡再變大些,epoch的次數也增大,半精度和全精度的時間差就表現出來了,在訓練的時候。

補充:pytorch半精度,混合精度,單精度訓練的區別amp.initialize

看代碼吧~

mixed_precision = True
try:  # Mixed precision training https://github.com/NVIDIA/apex
    from apex import amp
except:
    mixed_precision = False  # not installed

 model, optimizer = amp.initialize(model, optimizer, opt_level='O1', verbosity=1)

為了幫助提高Pytorch的訓練效率,英偉達提供了混合精度訓練工具Apex。號稱能夠在不降低性能的情況下,將模型訓練的速度提升2-4倍,訓練顯存消耗減少為之前的一半。

文檔地址是:https://nvidia.github.io/apex/index.html

該 工具 提供了三個功能,amp、parallel和normalization。由于目前該工具還是0.1版本,功能還是很基礎的,在最后一個normalization功能中只提供了LayerNorm層的復現,實際上在后續的使用過程中會發現,出現問題最多的是pytorch的BN層。

第二個工具是pytorch的分布式訓練的復現,在文檔中描述的是和pytorch中的實現等價,在代碼中可以選擇任意一個使用,實際使用過程中發現,在使用混合精度訓練時,使用Apex復現的parallel工具,能避免一些bug。

默認訓練方式是 單精度float32

import torch
model = torch.nn.Linear(D_in, D_out)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
for img, label in dataloader:
 out = model(img)
 loss = LOSS(out, label)
 loss.backward()
 optimizer.step()
 optimizer.zero_grad()

半精度 model(img.half())

import torch
model = torch.nn.Linear(D_in, D_out).half()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
for img, label in dataloader:
 out = model(img.half())
 loss = LOSS(out, label)
 loss.backward()
 optimizer.step()
 optimizer.zero_grad()

接下來是混合精度的實現,這里主要用到Apex的amp工具。代碼修改為:

加上這一句封裝,

model, optimizer = amp.initialize(model, optimizer, opt_level=“O1”)
import torch
model = torch.nn.Linear(D_in, D_out).cuda()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
model, optimizer = amp.initialize(model, optimizer, opt_level="O1")

for img, label in dataloader:
 out = model(img)
 loss = LOSS(out, label)
 # loss.backward()
 with amp.scale_loss(loss, optimizer) as scaled_loss:
     scaled_loss.backward()

 optimizer.step()
 optimizer.zero_grad()

實際流程為:調用amp.initialize按照預定的opt_level對model和optimizer進行設置。在計算loss時使用amp.scale_loss進行回傳。

需要注意以下幾點:

在調用amp.initialize之前,模型需要放在GPU上,也就是需要調用cuda()或者to()。

在調用amp.initialize之前,模型不能調用任何分布式設置函數。

此時輸入數據不需要在轉換為半精度。

在使用混合精度進行計算時,最關鍵的參數是opt_level。他一共含有四種設置值:‘00',‘01',‘02',‘03'。實際上整個amp.initialize的輸入參數很多:

但是在實際使用過程中發現,設置opt_level即可,這也是文檔中例子的使用方法,甚至在不同的opt_level設置條件下,其他的參數會變成無效。(已知BUG:使用‘01'時設置keep_batchnorm_fp32的值會報錯)

概括起來:

00相當于原始的單精度訓練。01在大部分計算時采用半精度,但是所有的模型參數依然保持單精度,對于少數單精度較好的計算(如softmax)依然保持單精度。02相比于01,將模型參數也變為半精度。

03基本等于最開始實驗的全半精度的運算。值得一提的是,不論在優化過程中,模型是否采用半精度,保存下來的模型均為單精度模型,能夠保證模型在其他應用中的正常使用。這也是Apex的一大賣點。

在Pytorch中,BN層分為train和eval兩種操作。

實現時若為單精度網絡,會調用CUDNN進行計算加速。常規訓練過程中BN層會被設為train。Apex優化了這種情況,通過設置keep_batchnorm_fp32參數,能夠保證此時BN層使用CUDNN進行計算,達到最好的計算速度。

但是在一些fine tunning場景下,BN層會被設為eval(我的模型就是這種情況)。此時keep_batchnorm_fp32的設置并不起作用,訓練會產生數據類型不正確的bug。此時需要人為的將所有BN層設置為半精度,這樣將不能使用CUDNN加速。

一個設置的參考代碼如下:

def fix_bn(m):
 classname = m.__class__.__name__
    if classname.find('BatchNorm') != -1:
     m.eval().half()

model.apply(fix_bn)

pytorch的優點

1.PyTorch是相當簡潔且高效快速的框架;2.設計追求最少的封裝;3.設計符合人類思維,它讓用戶盡可能地專注于實現自己的想法;4.與google的Tensorflow類似,FAIR的支持足以確保PyTorch獲得持續的開發更新;5.PyTorch作者親自維護的論壇 供用戶交流和求教問題6.入門簡單

看完上述內容,你們對使用Pytorch怎么實現半精度浮點型網絡訓練有進一步的了解嗎?如果還想了解更多知識或者相關內容,請關注億速云行業資訊頻道,感謝大家的支持。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

高阳县| 日照市| 霍邱县| 彭泽县| 安吉县| 夏河县| 天门市| 弥勒县| 东丽区| 长垣县| 南澳县| 武功县| 高阳县| 新巴尔虎左旗| 成武县| 玉门市| 宿迁市| 来凤县| 茶陵县| 桑植县| 无锡市| 安达市| 奉贤区| 呼图壁县| 陇南市| 湖北省| 赣州市| 洪洞县| 吉木乃县| 耒阳市| 卓资县| 扶绥县| 永清县| 白朗县| 安达市| 泸州市| 盖州市| 新乡县| 太康县| 易门县| 黄大仙区|