您好,登錄后才能下訂單哦!
怎么在pytorch中使用float64訓練?相信很多沒有經驗的人對此束手無策,為此本文總結了問題出現的原因和解決方法,通過這篇文章希望你能解決這個問題。
使用float16訓練模型,模型效果會有損失,而使用double(float64)會有2倍的內存壓力,且不會帶來太多的精度提升。
本人,最近遇到需要使用double數據類型訓練模型的情況,具體實現需要把模型的權重參數數據類型和輸入數據類型全部設置為torch.float64即可。
可使用torch的一個函數,輕松地把模型參數轉化為float64
torch.set_default_dtype(torch.float64)
輸入類型可使用
tensor.type(torch.float64)
補充:float32和float64的本質區別
bits:名為位數bytes:為字節簡單的數就是MB和G的關系!
那么8bits=1bytes,下面是各個單位的相互轉化!
數位的區別一個在內存中占分別32和64個bits,也就是4bytes或8bytes數位越高浮點數的精度越高它會影響深度學習計算效率?
float64占用的內存是float32的兩倍,是float16的4倍;
比如對于CIFAR10數據集,如果采用float64來表示,需要60000*32*32*3*8/1024**3=1.4G,光把數據集調入內存就需要1.4G;
如果采用float32,只需要0.7G,如果采用float16,只需要0.35G左右;
占用內存的多少,會對系統運行效率有嚴重影響;(因此數據集文件都是采用uint8來存在數據,保持文件最小)
1.PyTorch是相當簡潔且高效快速的框架;2.設計追求最少的封裝;3.設計符合人類思維,它讓用戶盡可能地專注于實現自己的想法;4.與google的Tensorflow類似,FAIR的支持足以確保PyTorch獲得持續的開發更新;5.PyTorch作者親自維護的論壇 供用戶交流和求教問題6.入門簡單
看完上述內容,你們掌握怎么在pytorch中使用float64訓練的方法了嗎?如果還想學到更多技能或想了解更多相關內容,歡迎關注億速云行業資訊頻道,感謝各位的閱讀!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。