您好,登錄后才能下訂單哦!
小編給大家分享一下python中如何使用遺傳算法庫,相信大部分人都還不怎么了解,因此分享這篇文章給大家參考一下,希望大家閱讀完這篇文章后大有收獲,下面讓我們一起去了解一下吧!
遺傳算法庫——scikit-opt
一個封裝了7種啟發式算法的 Python 代碼庫
(差分進化算法、遺傳算法、粒子群算法、模擬退火算法、蟻群算法、魚群算法、免疫優化算法)
安裝
pip install scikit-opt
遺傳算法示例代碼
第一步:定義你的問題
-> Demo code: examples/demo_ga.py#s1
import numpy as np def schaffer(p): ''' This function has plenty of local minimum, with strong shocks global minimum at (0,0) with value 0 ''' x1, x2 = p x = np.square(x1) + np.square(x2) return 0.5 + (np.sin(x) - 0.5) / np.square(1 + 0.001 * x)
第二步:運行遺傳算法
-> Demo code: examples/demo_ga.py#s2
from sko.GA import GA ga = GA(func=schaffer, n_dim=2, size_pop=50, max_iter=800, lb=[-1, -1], ub=[1, 1], precision=1e-7) best_x, best_y = ga.run() print('best_x:', best_x, '\n', 'best_y:', best_y)
第三步:用 matplotlib 畫出結果
-> Demo code: examples/demo_ga.py#s3
import pandas as pd import matplotlib.pyplot as plt Y_history = pd.DataFrame(ga.all_history_Y) fig, ax = plt.subplots(2, 1) ax[0].plot(Y_history.index, Y_history.values, '.', color='red') Y_history.min(axis=1).cummin().plot(kind='line') plt.show()
運行效果:
以上是python中如何使用遺傳算法庫的所有內容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內容對大家有所幫助,如果還想學習更多知識,歡迎關注億速云行業資訊頻道!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。