您好,登錄后才能下訂單哦!
python實現從PDF中提取數據?很多新手對此不是很清楚,為了幫助大家解決這個難題,下面小編將為大家詳細講解,有這方面需求的人可以來學習下,希望你能有所收獲。
使用Python從PDF文件中提取一個表格
a)將表復制到Excel并保存為table_1_raw.csv
數據以一維格式存儲,必須進行重塑、清理和轉換。
b)導入必要的庫
import pandas as pd import numpy as np
c)導入原始數據,重新定義數據
df=pd.read_csv("table_1_raw.csv", header=None) df.values.shape df2=pd.DataFrame(df.values.reshape(25,10)) column_names=df2[0:1].values[0] df3=df2[1:] df3.columns = df2[0:1].values[0] df3.head()
d)使用字符串處理工具進行數據糾纏
我們從上面的表格中注意到,x5、x6和x7列是用百分比表示的,所以我們需要去掉percent(%)符號:
df4['x5']=list(map(lambda x: x[:-1], df4['x5'].values)) df4['x6']=list(map(lambda x: x[:-1], df4['x6'].values)) df4['x7']=list(map(lambda x: x[:-1], df4['x7'].values))
e)將數據轉換為數字形式
我們注意到列x5、x6和x7的列值數據類型為string,因此我們需要將它們轉換為數值數據,如下所示:
df4['x5']=[float(x) for x in df4['x5'].values] df4['x6']=[float(x) for x in df4['x6'].values] df4['x7']=[float(x) for x in df4['x7'].values]
f)查看轉換數據的最終形式
df4.head(n=5)
g)導出最終數據到一個csv文件
df4.to_csv('table_1_final.csv',index=False)
看完上述內容是否對您有幫助呢?如果還想對相關知識有進一步的了解或閱讀更多相關文章,請關注億速云行業資訊頻道,感謝您對億速云的支持。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。