91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

從云到端,谷歌的AI芯片2.0

發布時間:2020-08-09 08:59:28 來源:ITPUB博客 閱讀:160 作者:naojiti 欄目:互聯網科技

得芯片者得天下。我們可以把這句話再延伸一下說,得AI芯片者得未來的天下。

對于智能終端廠商來說,能夠自研SoC芯片似乎才是頂級實力的象征。眾所周知,盤踞全球智能手機前三甲的三星、華為、蘋果,無一例外都擁有自研的SoC芯片。

從云到端,谷歌的AI芯片2.0

(2020智能手機芯片跑分數據TOP10)

現在,經歷了多年的輔助AI芯片的經驗積累之后,谷歌終于要入場智能終端的核心硬件——SoC處理器芯片了。

據外媒Axois報告,谷歌在自研處理器方面取得了顯著進步,最近其自主研發的 SoC 芯片已經成功流片。

據悉,該芯片是谷歌與三星聯合開發,采用5nm工藝制造,“2+2+4”三架構設計的8核CPU集群,以及搭載全新ARM公版架構的GPU,同時在ISP和NPU上集成了谷歌Visual Core AI視覺處理器。這讓谷歌的終端芯片能夠更好地支持AI技術,比如大幅提升谷歌助手的交互體驗。

在上市計劃上,谷歌的這一SoC處理器芯片預計將于率先部署在下一代Pixel手機以及谷歌筆記本Chromebook中。

谷歌的這一舉動被視為對蘋果自研處理器模式的靠攏,從“原生系統+最主流旗艦芯片”變為“原生系統+自研芯片”,谷歌的用意肯定不僅是想擺脫高通芯片的鉗制,更重要的是想通過自研芯片實現更好的軟硬件結合,使得安卓系統在自家硬件上發揮更大的性能優勢。

我們其實知道,自研芯片并不能在硬件利潤上帶給谷歌更多的價值,其中最有價值的地方在于將谷歌AI上面的優勢通過軟硬件的結合,在智能終端上得到更好的應用。

我們也都知道,谷歌在AI芯片上入局最早,實力強勁。然而AI芯片的技術有多強,AI技術和芯片研發有哪些相互促進的關系?相信很多人還是不明就里的,而這正是我們接下來要去深入探究的。

從云端到終邊端,谷歌AI芯片的進階之路

在谷歌的TPU(Tensor Processing Unit,張量處理單元)處理器推出之前,大部分的機器學習以及圖像處理算法一直都是跑在GPU與FPGA這兩種通用芯片上面的。而提出了深度學習開源框架TensorFlow的谷歌則專門做出這樣一款為TensorFlow算法設計的專用芯片。

TPU就這樣誕生了,然而讓TPU的聲名遠播卻是在AlphaGo大戰李世石的人機圍棋賽。據說,當時谷歌為TPU其實下了另一盤大棋的。因為在挑戰李世石之前,AlphaGo是跑在1202個CPU和176個GPU上面與棋手樊麾比賽的。這讓看過對弈過程的李世石很有信心。然而在比賽前幾個月,AlphaGo的硬件平臺換上了TPU,這讓AlphaGo的實力很快得到成長,后面的對戰局勢讓李世石就吃盡了苦頭。

從云到端,谷歌的AI芯片2.0

(谷歌TPU芯片)

TPU是一種專用集成電路(ASIC),作為專門在谷歌云使用的AI芯片,其使命就在于加速谷歌人工智能落地的速度。在2017年谷歌公布的第二代TPU上,其浮點運算能力高達每秒180萬億次,既可以用于推理,也可以用做訓練。而到了2018年的TPU3.0版本,其計算性能相比TPU 2.0提升八倍,可達每秒 1000 萬億次浮點計算。

此后,谷歌的AI布局逐漸走向邊緣側。在2017年的谷歌云服務年會上,正式發布其邊緣技術,并推出了Google Edge TPU。

Edge TPU是谷歌專為在邊緣運行TensorFlow Lite ML模型而設計的ASIC芯片。Edge TPU 可用于越來越多的工業使用場景,如預測性維護、異常檢測、機器視覺、機器人學、語音識別,也可以應用于本地部署、醫療保健、零售、智能空間、交通運輸等各個領域。

Edge TPU體型小、能耗低,因此只負責AI加速判別、加速推算,僅為加速器、輔助處理器的角色,可以在邊緣部署高精度AI,是對CPU、GPU、FPGA 以及其他在邊緣運行AI的ASIC解決方案的補充。

谷歌還在去年推出了基于Edge TPU芯片的等一系列開發硬件,以及本地化AI平臺Coral,為邊緣側提供優質、易部署的AI解決方案。

盡管TPU和Edge TPU主要是對深度學習起到運算推理加速的輔助服務器,但我們仍然能夠看到谷歌在AI芯片上的布局野心。從云端,到邊緣端和手機智能終端,正是理解谷歌AI芯片的內在邏輯。

從云到端,谷歌的AI芯片2.0

(Pixel Visual Core)

從2017年開始,谷歌就在智能手機上陸續推出了定制的攝像頭芯片“Pixel Visual Core”和“Pixel Neuro Core”,并用在了 Pixel 2、Pixel 3 和 Pixel 4上。

Pixel Visual Core,是一種圖像處理單元(IPU),也是谷歌自研的第一款移動芯片,專門用于加速相機的HDR+計算,其使用了機器學習和計算攝影,可以智能地修補照片不完美的部分,也使圖像處理更加流暢和快速。這也是很多人說的谷歌手機的照片不是拍出來的,而是算出來的原因。

而到了去年,谷歌在Pixel 4上使用了Pixel Neural Core專用處理器來代替Pixel VIsual Core。神經網絡算法可以使谷歌手機的相機鏡頭識別所拍攝的物體,然后既可以將數據交給圖像處理算法去優化,也可以將數據輸出給谷歌助手進行識別。同時,Pixel Neural Core也可以讓谷歌助手進行更復雜的人機對話,還有進行離線的語音文本翻譯。

如果谷歌不是有著TensorFlow、Halide以及編譯器等AI算法和開發軟件,谷歌的AI芯片的很多設計顯然是無法發揮太大作用的。軟硬件結合,才讓谷歌的芯片設計走得更為徹底和硬氣。

軟硬兼融,谷歌AI芯片快速迭代的硬氣底色

在互聯網公司的造芯賽道上,谷歌無疑是跑在最前面的一家。

據報道,早在2006年,谷歌就考慮在其數據中心部署 GPU或者 FPGA,或專用集成電路。而由于當時沒有多少要在專門硬件上運行的應用,因此使用谷歌大型數據中心的富余計算能力就能滿足算力要求。

而一直到2013年,谷歌已經開始推出基于DNN的語音識別的語音搜索技術,用戶的需求使得谷歌數據中心的計算需求增加了一倍,這讓基于CPU的計算變得特別昂貴。因此,谷歌計劃使用現成的GPU用于模型訓練,而快速開發一款專用的集成電路芯片用于推理。

從云到端,谷歌的AI芯片2.0

后來我們知道這一專用定制芯片就是TPU,而這一快速開發的周期僅僅是15個月。基于軟件造芯,谷歌并非獨一家,但相比亞馬遜、Facebook來說,谷歌則一直有持續的芯片產品推出。谷歌能夠如此快速且高頻地進行“硬件”輸出,那自然是有其“硬氣”的原因的。

首先一定是戰略上的重視。此前谷歌CEO皮猜就曾強調,谷歌從來不是為硬件而硬件,背后的邏輯一定是AI、軟件和硬件一體,真正解決問題要靠這三位一體。

其次就是人才的重視。以當前谷歌這一消費端的SoC芯片為例。此前這一項目對外界來說早已是公開的“秘密”。從2017年底,谷歌就開始從蘋果、高通、英偉達等公司高薪挖“角”,其中包括蘋果A系列處理器著名的研發工程師John Bruno。但直到去年2月,谷歌才正式宣布在印度班加羅爾的組建了一支“gChips”芯片設計團隊,致力于谷歌智能手機和數據中心芯片業務,未來還會在該地辦新的半導體工廠。消費級芯片似乎只差臨門一腳了。

當然,最重要的因素還在于谷歌在AI芯片上的創新優勢。我們知道,AI芯片的研發,本身是一個周期長且耗費巨大資金的項目。芯片設計到成品的周期可能趕不上AI算法的發展進程。如何實現AI芯片的硬件設計與算法、軟件的平衡,成為谷歌設計芯片的關鍵優勢。

而谷歌提出的解決方案則更值得稱道,那就是用AI算法設計AI芯片。

具體來說,AI芯片設計存在著以下難題。首先是,3D芯片的放置,在受限區域中跨層級配置數百到上千的組件,工程師們需要手動設計來進行配置,并通過自動化軟件進行模擬和性能驗證,這通常需要花費大量時間。其次是,芯片的設計架構趕不上機器學習算法或神經網絡架構的發展速度,導致這些算法架構在現有的AI加速器上效果不佳。另外,盡管芯片的布局規劃的設計進程在加快,但在包括芯片功耗、計算性能和面積等多個目標的優化能力上仍然存在限制。

為應對這些挑戰,谷歌的高級研究科學家Mirhoseini和團隊研究人員Anna Goldie提出了一種神經網絡,即將芯片布局建模轉化為強化學習問題。

與典型的深度學習不同,強化學習系統不會使用大量標記的數據進行訓練。相反,神經網絡會邊做邊學,并在成功時根據有效信號調整網絡中的參數。在這種情況下,有效信號成為降低功率、改善性能和減少面積組合的替代指標。結果就是,系統執行的設計越多,其效果就會越好。

在對芯片設計進行了足夠長時間的學習之后,它可以在不到24小時的時間內為谷歌Tensor處理單元完成設計,而且在功耗、性能、面積都超過了人類專家數周的設計成果。研究人員說,這一系統還向人類同行教授了一些新技巧。

最終,谷歌團隊希望像這一AI系統能達到“在同一時間段內設計更多的芯片,以及運行速度更快,功耗更低,制造成本更低,外形體積更小的芯片”這一目標。

意在未來,谷歌SoC芯片集成的AI野心

這一次谷歌自研的終端處理器SoC芯片,其本質上還是谷歌AI芯片的延伸。

細心的人們應該已經發現,這次的SoC芯片并不是完全出自谷歌研發團隊,而是選擇了與三星展開了合作。從媒體的曝光看,谷歌這次的手機主控會采用5nm制程、Cortex-A78大核、核心數多達20個的新GPU,而這些恰好就是三星Exynos 1000的特征。所以,這款三星堆料的芯片,最主要的“谷歌元素”就是在ISP和NPU上應用了谷歌自家設計的AI芯片。

從云到端,谷歌的AI芯片2.0

(谷歌Pixel5諜照)

這一選擇自然有著谷歌充分的考慮和一些明顯的優勢,但也存在著一些不利的影響。

最直觀的好處就是加快了谷歌的手機端SoC芯片的研制速度,降低對高通處理器的依賴,并可以迅速應用到下一代谷歌pixel手機上。

另外一個好處是,谷歌主導的芯片設計將使得谷歌像蘋果一樣建成自己的封閉系統。谷歌最硬核之處就在于擁有龐大的數據和AI算法。伴隨著應用層面不斷豐富的數據體驗和AI體驗,比如在飛行模式下實現語音實時轉錄文字的功能,手機的硬件性能以及系統的兼容支撐就可能成為智能手機的性能天花板。如何在安卓系統中將處理器性能發揮到最大,可能沒有誰比谷歌更清楚了。

畢竟前面幾款谷歌Pixel手機的市場表現都不溫不火,盡管其在拍攝算法和AI助手等應用上面極具優勢,但在終端的外觀設計、屏幕、攝像頭、電池等硬件配置上一直存在“短板”,難以和全球幾家主流終端玩家的旗艦機型媲美。想必應用了最新一代的SoC芯片的新款Pixel機型的定價也將非常“高端”,但在硬件上的“偏科”,可能仍然會影響其整體的市場表現。

此外,由于這是一款全新的“非主流”芯片,也會對游戲、軟件開發者而言,不再成為“軟件開發樣板機”的首選測試機型。

無論如何,這一集成了深度學習性能的SoC芯片,將為谷歌爭奪未來的AI市場做好準備,幫助谷歌、在移動終端上將語音識別、圖像處理等AI應用的性能發揮到極致,提早一步占領真正的智能終端的領導者位置。

從云到端,谷歌的AI芯片2.0

無論怎樣,谷歌的造“芯”舉動,一定會對上游芯片廠商以及智能終端廠商帶來正面沖擊。如果通過“Whitechapel”證明了谷歌的“造芯”戰略的成功,那么谷歌距離蘋果的差距還有多少呢?

自研芯片、安卓系統疊加最新AI計算能力,如果再補足硬件配置的短板,那么谷歌極有可能打造一個安卓生態圈的軟硬件完美適配的閉環系統。

最后,我們發現一個比較令人疑惑的細節。此次芯片的代號為“Whitechapel”,名為“白教堂”。如果熟悉英美劇的讀者們,可能會看過一部名為《白教堂血案》的英劇。如果不是非要過度解讀的話,我們可以理解為某位重要研發者喜歡這部驚悚懸疑劇,所以以此來命名。如果非要“過度”解讀一下的話,谷歌可能是想用一個百年未解的“謎團”來預示著智能終端的AI應用的紛爭的開場。

當然,這個答案也許還得等谷歌的新的Pixel手機上市才能揭曉。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

西贡区| 藁城市| 盘山县| 丘北县| 建湖县| 凉城县| 平罗县| 石城县| 方城县| 托克托县| 大埔区| 永修县| 方正县| 平昌县| 新沂市| 鲁甸县| 买车| 乌海市| 二连浩特市| 东乡族自治县| 根河市| 阜南县| 修武县| 焦作市| 化州市| 南平市| 南川市| 丹阳市| 偏关县| 马龙县| 武城县| 屏东县| 上思县| 民县| 碌曲县| 济源市| 北辰区| 湖口县| 萨迦县| 四平市| 湖北省|