91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

如何實現keras訓練淺層卷積網絡并保存和加載模型

發布時間:2020-07-02 14:30:50 來源:億速云 閱讀:242 作者:清晨 欄目:開發技術

不懂如何實現keras訓練淺層卷積網絡并保存和加載模型?其實想解決這個問題也不難,下面讓小編帶著大家一起學習怎么去解決,希望大家閱讀完這篇文章后大所收獲。

這里我們使用keras定義簡單的神經網絡全連接層訓練MNIST數據集和cifar10數據集:

keras_mnist.py

from sklearn.preprocessing import LabelBinarizer
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from keras.models import Sequential
from keras.layers.core import Dense
from keras.optimizers import SGD
from sklearn import datasets
import matplotlib.pyplot as plt
import numpy as np
import argparse
# 命令行參數運行
ap = argparse.ArgumentParser()
ap.add_argument("-o", "--output", required=True, help="path to the output loss/accuracy plot")
args =vars(ap.parse_args())
# 加載數據MNIST,然后歸一化到【0,1】,同時使用75%做訓練,25%做測試
print("[INFO] loading MNIST (full) dataset")
dataset = datasets.fetch_mldata("MNIST Original", data_home="/home/king/test/python/train/pyimagesearch/nn/data/")
data = dataset.data.astype("float") / 255.0
(trainX, testX, trainY, testY) = train_test_split(data, dataset.target, test_size=0.25)
# 將label進行one-hot編碼
lb = LabelBinarizer()
trainY = lb.fit_transform(trainY)
testY = lb.transform(testY)
# keras定義網絡結構784--256--128--10
model = Sequential()
model.add(Dense(256, input_shape=(784,), activation="relu"))
model.add(Dense(128, activation="relu"))
model.add(Dense(10, activation="softmax"))
# 開始訓練
print("[INFO] training network...")
# 0.01的學習率
sgd = SGD(0.01)
# 交叉驗證
model.compile(loss="categorical_crossentropy", optimizer=sgd, metrics=['accuracy'])
H = model.fit(trainX, trainY, validation_data=(testX, testY), epochs=100, batch_size=128)
# 測試模型和評估
print("[INFO] evaluating network...")
predictions = model.predict(testX, batch_size=128)
print(classification_report(testY.argmax(axis=1), predictions.argmax(axis=1), 
	target_names=[str(x) for x in lb.classes_]))
# 保存可視化訓練結果
plt.style.use("ggplot")
plt.figure()
plt.plot(np.arange(0, 100), H.history["loss"], label="train_loss")
plt.plot(np.arange(0, 100), H.history["val_loss"], label="val_loss")
plt.plot(np.arange(0, 100), H.history["acc"], label="train_acc")
plt.plot(np.arange(0, 100), H.history["val_acc"], label="val_acc")
plt.title("Training Loss and Accuracy")
plt.xlabel("# Epoch")
plt.ylabel("Loss/Accuracy")
plt.legend()
plt.savefig(args["output"])

使用relu做激活函數:

如何實現keras訓練淺層卷積網絡并保存和加載模型

使用sigmoid做激活函數:

如何實現keras訓練淺層卷積網絡并保存和加載模型

接著我們自己定義一些modules去實現一個簡單的卷基層去訓練cifar10數據集:

imagetoarraypreprocessor.py

'''
該函數主要是實現keras的一個細節轉換,因為訓練的圖像時RGB三顏色通道,讀取進來的數據是有depth的,keras為了兼容一些后臺,默認是按照(height, width, depth)讀取,但有時候就要改變成(depth, height, width)
'''
from keras.preprocessing.image import img_to_array
class ImageToArrayPreprocessor:
	def __init__(self, dataFormat=None):
		self.dataFormat = dataFormat
 
	def preprocess(self, image):
		return img_to_array(image, data_format=self.dataFormat) 

shallownet.py

'''
定義一個簡單的卷基層:
input->conv->Relu->FC
'''
from keras.models import Sequential
from keras.layers.convolutional import Conv2D
from keras.layers.core import Activation, Flatten, Dense
from keras import backend as K
 
class ShallowNet:
	@staticmethod
	def build(width, height, depth, classes):
		model = Sequential()
		inputShape = (height, width, depth)
 
		if K.image_data_format() == "channels_first":
			inputShape = (depth, height, width)
 
		model.add(Conv2D(32, (3, 3), padding="same", input_shape=inputShape))
		model.add(Activation("relu"))
 
		model.add(Flatten())
		model.add(Dense(classes))
		model.add(Activation("softmax"))
 
		return model

然后就是訓練代碼:

keras_cifar10.py

from sklearn.preprocessing import LabelBinarizer
from sklearn.metrics import classification_report
from shallownet import ShallowNet
from keras.optimizers import SGD
from keras.datasets import cifar10
import matplotlib.pyplot as plt
import numpy as np
import argparse
 
ap = argparse.ArgumentParser()
ap.add_argument("-o", "--output", required=True, help="path to the output loss/accuracy plot")
args = vars(ap.parse_args())
 
print("[INFO] loading CIFAR-10 dataset")
((trainX, trainY), (testX, testY)) = cifar10.load_data()
trainX = trainX.astype("float") / 255.0
testX = testX.astype("float") / 255.0
 
lb = LabelBinarizer()
trainY = lb.fit_transform(trainY)
testY = lb.transform(testY)
# 標簽0-9代表的類別string
labelNames = ['airplane', 'automobile', 'bird', 'cat', 
	'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
 
print("[INFO] compiling model...")
opt = SGD(lr=0.0001)
model = ShallowNet.build(width=32, height=32, depth=3, classes=10)
model.compile(loss="categorical_crossentropy", optimizer=opt, metrics=["accuracy"])
 
print("[INFO] training network...")
H = model.fit(trainX, trainY, validation_data=(testX, testY), batch_size=32, epochs=1000, verbose=1)
 
print("[INFO] evaluating network...")
predictions = model.predict(testX, batch_size=32)
print(classification_report(testY.argmax(axis=1), predictions.argmax(axis=1), 
	target_names=labelNames))
 
# 保存可視化訓練結果
plt.style.use("ggplot")
plt.figure()
plt.plot(np.arange(0, 1000), H.history["loss"], label="train_loss")
plt.plot(np.arange(0, 1000), H.history["val_loss"], label="val_loss")
plt.plot(np.arange(0, 1000), H.history["acc"], label="train_acc")
plt.plot(np.arange(0, 1000), H.history["val_acc"], label="val_acc")
plt.title("Training Loss and Accuracy")
plt.xlabel("# Epoch")
plt.ylabel("Loss/Accuracy")
plt.legend()
plt.savefig(args["output"]) 

代碼中可以對訓練的learning rate進行微調,大概可以接近60%的準確率。

如何實現keras訓練淺層卷積網絡并保存和加載模型

如何實現keras訓練淺層卷積網絡并保存和加載模型

然后修改下代碼可以保存訓練模型:

from sklearn.preprocessing import LabelBinarizer
from sklearn.metrics import classification_report
from shallownet import ShallowNet
from keras.optimizers import SGD
from keras.datasets import cifar10
import matplotlib.pyplot as plt
import numpy as np
import argparse
 
ap = argparse.ArgumentParser()
ap.add_argument("-o", "--output", required=True, help="path to the output loss/accuracy plot")
ap.add_argument("-m", "--model", required=True, help="path to save train model")
args = vars(ap.parse_args())
 
print("[INFO] loading CIFAR-10 dataset")
((trainX, trainY), (testX, testY)) = cifar10.load_data()
trainX = trainX.astype("float") / 255.0
testX = testX.astype("float") / 255.0
 
lb = LabelBinarizer()
trainY = lb.fit_transform(trainY)
testY = lb.transform(testY)
# 標簽0-9代表的類別string
labelNames = ['airplane', 'automobile', 'bird', 'cat', 
	'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
 
print("[INFO] compiling model...")
opt = SGD(lr=0.005)
model = ShallowNet.build(width=32, height=32, depth=3, classes=10)
model.compile(loss="categorical_crossentropy", optimizer=opt, metrics=["accuracy"])
 
print("[INFO] training network...")
H = model.fit(trainX, trainY, validation_data=(testX, testY), batch_size=32, epochs=50, verbose=1)
 
model.save(args["model"])
 
print("[INFO] evaluating network...")
predictions = model.predict(testX, batch_size=32)
print(classification_report(testY.argmax(axis=1), predictions.argmax(axis=1), 
	target_names=labelNames))
 
# 保存可視化訓練結果
plt.style.use("ggplot")
plt.figure()
plt.plot(np.arange(0, 5), H.history["loss"], label="train_loss")
plt.plot(np.arange(0, 5), H.history["val_loss"], label="val_loss")
plt.plot(np.arange(0, 5), H.history["acc"], label="train_acc")
plt.plot(np.arange(0, 5), H.history["val_acc"], label="val_acc")
plt.title("Training Loss and Accuracy")
plt.xlabel("# Epoch")
plt.ylabel("Loss/Accuracy")
plt.legend()
plt.savefig(args["output"]) 

命令行運行:

如何實現keras訓練淺層卷積網絡并保存和加載模型

我們使用另一個程序來加載上一次訓練保存的模型,然后進行測試:

test.py

from sklearn.preprocessing import LabelBinarizer
from sklearn.metrics import classification_report
from shallownet import ShallowNet
from keras.optimizers import SGD
from keras.datasets import cifar10
from keras.models import load_model
import matplotlib.pyplot as plt
import numpy as np
import argparse
 
ap = argparse.ArgumentParser()
ap.add_argument("-m", "--model", required=True, help="path to save train model")
args = vars(ap.parse_args())
 
# 標簽0-9代表的類別string
labelNames = ['airplane', 'automobile', 'bird', 'cat', 
	'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
 
print("[INFO] loading CIFAR-10 dataset")
((trainX, trainY), (testX, testY)) = cifar10.load_data()
 
idxs = np.random.randint(0, len(testX), size=(10,))
testX = testX[idxs]
testY = testY[idxs]
 
trainX = trainX.astype("float") / 255.0
testX = testX.astype("float") / 255.0
 
lb = LabelBinarizer()
trainY = lb.fit_transform(trainY)
testY = lb.transform(testY)
 
print("[INFO] loading pre-trained network...")
model = load_model(args["model"])
 
print("[INFO] evaluating network...")
predictions = model.predict(testX, batch_size=32).argmax(axis=1)
print("predictions\n", predictions)
for i in range(len(testY)):
	print("label:{}".format(labelNames[predictions[i]]))
 
trueLabel = []
for i in range(len(testY)):
	for j in range(len(testY[i])):
		if testY[i][j] != 0:
			trueLabel.append(j)
print(trueLabel)
 
print("ground truth testY:")
for i in range(len(trueLabel)):
	print("label:{}".format(labelNames[trueLabel[i]]))
 
print("TestY\n", testY)

如何實現keras訓練淺層卷積網絡并保存和加載模型

感謝你能夠認真閱讀完這篇文章,希望小編分享如何實現keras訓練淺層卷積網絡并保存和加載模型內容對大家有幫助,同時也希望大家多多支持億速云,關注億速云行業資訊頻道,遇到問題就找億速云,詳細的解決方法等著你來學習!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

江川县| 灵石县| 蒙自县| 福贡县| 黑山县| 开封县| 威远县| 新郑市| 钟祥市| 临颍县| 金湖县| 德清县| 南投市| 阳春市| 德令哈市| 五河县| 明星| 辽宁省| 崇仁县| 新源县| 五台县| 龙泉市| 桂阳县| 华亭县| 蒲江县| 陕西省| 申扎县| 长顺县| 沽源县| 东丰县| 青河县| 靖西县| 安远县| 莆田市| 尼木县| 得荣县| 乐清市| 桦南县| 斗六市| 濮阳县| 贵德县|