您好,登錄后才能下訂單哦!
這篇文章給大家分享的是有關C++基于回溯法如何解決八皇后問題的內容。小編覺得挺實用的,因此分享給大家做個參考,一起跟隨小編過來看看吧。
具體如下:
回溯法的基本做法是搜索,或是一種組織得井井有條的,能避免不必要搜索的窮舉式搜索法。這種方法適用于解一些組合數相當大的問題。
回溯法在問題的解空間樹中,按深度優先策略,從根結點出發搜索解空間樹。算法搜索至解空間樹的任意一點時,先判斷該結點是否包含問題的解。如果肯定不包含,則跳過對該結點為根的子樹的搜索,逐層向其祖先結點回溯;否則,進入該子樹,繼續按深度優先策略搜索。
回溯法指導思想——走不通,就掉頭。設計過程:確定問題的解空間;確定結點的擴展規則;搜索。
n皇后問題
要在n*n的國際象棋棋盤中放n個皇后,使任意兩個皇后都不能互相吃掉。規則:皇后能吃掉同一行、同一列、同一對角線的任意棋子。求所有的解。n=8是就是著名的八皇后問題了。
設八個皇后為xi,分別在第i行(i=1,2,3,4……,8);
問題的解狀態:可以用(1,x1),(2,x2),……,(8,x8)表示8個皇后的位置;
由于行號固定,可簡單記為:(x1,x2,x3,x4,x5,x6,x7,x8);
問題的解空間:(x1,x2,x3,x4,x5,x6,x7,x8),1≤xi≤8(i=1,2,3,4……,8),共88個狀態;
約束條件:八個(1,x1),(2,x2) ,(3,x3),(4,x4) ,(5,x5), (6,x6) , (7,x7), (8,x8)不在同一行、同一列和同一對角線上。
盲目的枚舉算法:通過8重循環模擬搜索空間中的88個狀態,從中找出滿足約束條件的“答案狀態”。程序如下:
/* *作者:侯凱 *說明:八皇后——盲目迭代法 *日期:2013-12-18 */ #include <iostream> using namespace std; bool check_1(int a[],int n) { for(int i=2;i<=n;i++) { for(int j=1;j<=i-1;j++) { if ((a[i]==a[j])||(abs(a[i]-a[j])==i-j)) { return false; } } } return true;//不沖突 } void queens_1() { int a[9]; int count = 0; for(a[1]=1;a[1]<=8;a[1]++) { for(a[2]=1;a[2]<=8;a[2]++) { for(a[3]=1;a[3]<=8;a[3]++) { for(a[4]=1;a[4]<=8;a[4]++) { for(a[5]=1;a[5]<=8;a[5]++) { for(a[6]=1;a[6]<=8;a[6]++) { for(a[7]=1;a[7]<=8;a[7]++) { for(a[8]=1;a[8]<=8;a[8]++) { if(!check_1(a,8)) continue; else { for(int i=1;i<=8;i++) { cout<<a[i]; } cout<<endl; count++; } } } } } } } } } cout<<count<<endl; } void main() { queens_1(); }
程序思想比較簡單,最后可知共92種擺放方法。如果能夠排除那些沒有前途的狀態,會節約時間——回溯法(走不通,就回頭)。
bool check_2 (int a[ ],int n) {//多次被調用,只需一重循環 for(int i=1;i<=n-1;i++) { if((abs(a[i]-a[n])==n-i)||(a[i]==a[n])) return false; } return true; } void queens_2() { int a[9]; int count = 0; for(a[1]=1;a[1]<=8;a[1]++) { for(a[2]=1;a[2]<=8;a[2]++) { if (!check_2(a,2)) continue; for(a[3]=1;a[3]<=8;a[3]++) { if (!check_2(a,3)) continue; for(a[4]=1;a[4]<=8;a[4]++) { if (!check_2(a,4)) continue; for(a[5]=1;a[5]<=8;a[5]++) { if (!check_2(a,5)) continue; for(a[6]=1;a[6]<=8;a[6]++) { if (!check_2(a,6)) continue; for(a[7]=1;a[7]<=8;a[7]++) { if (!check_2(a,7)) continue; for(a[8]=1;a[8]<=8;a[8]++) { if (!check_2(a,8)) continue; else { for(int i=1;i<=8;i++) { cout<<a[i]; } cout<<endl; count++; } } } } } } } } } cout<<count<<endl; } void main() { queens_2(); }
n此算法可讀性很好,體現了“回溯”。但它只針對八皇后問題,解決任意的n皇后問題還要修改程序結構。如果要解決n皇后的問題,就需要將n作為參數傳遞給函數,函數需要重寫來實現回溯(不能采用級聯的for循環,n不確定);從另一方面,程序中出現了大量的for循環,而且for中的函數結構很相似,自然想到的是遞歸迭代回溯。這就是回溯比較常用的兩種實現方法:非遞歸回溯和遞歸回溯。
非遞歸回溯的程序實現:
void backdate (int n) { int count = 0; int a[100]; int k = 1; a[1]=0; while(k>0) { a[k]=a[k]+1;//對應for循環的1~n while((a[k]<=n)&&(!check_2(a,k)))//搜索第k個皇后位置 { a[k]=a[k]+1; } if(a[k]<=n)//找到了合理的位置 { if(k==n ) {//找到一組解 for(int i=1;i<=8;i++) { cout<<a[i]; } cout<<endl; count++; } else { k=k+1;//繼續為第k+1個皇后找到位置,對應下一級for循環 a[k]=0;//下一個皇后一定要從頭開始搜索 } } else { k=k-1;//回溯,對應執行外內層for循環回到更上層 } } cout<<count<<endl; } void main() { backdate(8); }
這樣也可以得到,8皇后問題的92中結果。更簡單、可讀的方法是采用遞歸的方式,如下:
int a[100], n, count; void backtrack(int k) { if (k>n)//找到解 { for(int i=1;i<=8;i++) { cout<<a[i]; } cout<<endl; count++; } else { for (int i = 1;i <=n; i++) { a[k] = i; if (check_2(a,k) == 1) {backtrack(k+1);} } } } void main() { n=8,count=0; backtrack(1); cout<<count<<endl; }
可見,遞歸調用大大減少了代碼量,也增加了程序的可讀性。給出其中的一個解,如下:
感謝各位的閱讀!關于“C++基于回溯法如何解決八皇后問題”這篇文章就分享到這里了,希望以上內容可以對大家有一定的幫助,讓大家可以學到更多知識,如果覺得文章不錯,可以把它分享出去讓更多的人看到吧!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。