91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

C++基于回溯法如何解決八皇后問題

發布時間:2021-08-05 10:14:10 來源:億速云 閱讀:185 作者:小新 欄目:編程語言

這篇文章給大家分享的是有關C++基于回溯法如何解決八皇后問題的內容。小編覺得挺實用的,因此分享給大家做個參考,一起跟隨小編過來看看吧。

具體如下:

回溯法的基本做法是搜索,或是一種組織得井井有條的,能避免不必要搜索的窮舉式搜索法。這種方法適用于解一些組合數相當大的問題。

回溯法在問題的解空間樹中,按深度優先策略,從根結點出發搜索解空間樹。算法搜索至解空間樹的任意一點時,先判斷該結點是否包含問題的解。如果肯定不包含,則跳過對該結點為根的子樹的搜索,逐層向其祖先結點回溯;否則,進入該子樹,繼續按深度優先策略搜索。

回溯法指導思想——走不通,就掉頭。設計過程:確定問題的解空間;確定結點的擴展規則;搜索。

n皇后問題

要在n*n的國際象棋棋盤中放n個皇后,使任意兩個皇后都不能互相吃掉。規則:皇后能吃掉同一行、同一列、同一對角線的任意棋子。求所有的解。n=8是就是著名的八皇后問題了。

設八個皇后為xi,分別在第i行(i=1,2,3,4……,8);

問題的解狀態:可以用(1,x1),(2,x2),……,(8,x8)表示8個皇后的位置;

由于行號固定,可簡單記為:(x1,x2,x3,x4,x5,x6,x7,x8);

問題的解空間:(x1,x2,x3,x4,x5,x6,x7,x8),1≤xi≤8(i=1,2,3,4……,8),共88個狀態;

約束條件:八個(1,x1),(2,x2) ,(3,x3),(4,x4) ,(5,x5), (6,x6) , (7,x7), (8,x8)不在同一行、同一列和同一對角線上。

盲目的枚舉算法:通過8重循環模擬搜索空間中的88個狀態,從中找出滿足約束條件的“答案狀態”。程序如下:

/*
 *作者:侯凱
 *說明:八皇后——盲目迭代法
 *日期:2013-12-18
 */
#include <iostream>
using namespace std;
bool check_1(int a[],int n)
{
for(int i=2;i<=n;i++)
{
 for(int j=1;j<=i-1;j++)
 {
  if ((a[i]==a[j])||(abs(a[i]-a[j])==i-j))
  {
   return false;
  }
 }
}
return true;//不沖突
}
void queens_1()
{
 int a[9];
 int count = 0;
 for(a[1]=1;a[1]<=8;a[1]++)
 {
  for(a[2]=1;a[2]<=8;a[2]++)
  {
   for(a[3]=1;a[3]<=8;a[3]++)
   {
    for(a[4]=1;a[4]<=8;a[4]++)
    {
     for(a[5]=1;a[5]<=8;a[5]++)
     {
      for(a[6]=1;a[6]<=8;a[6]++)
      {
       for(a[7]=1;a[7]<=8;a[7]++)
       {
        for(a[8]=1;a[8]<=8;a[8]++)
        {
         if(!check_1(a,8)) 
          continue;
         else
         {
          for(int i=1;i<=8;i++) 
          {
           cout<<a[i];
          }
          cout<<endl;
          count++;
         }
        }
       }
      }
     }
    }
   }
  }
 }
 cout<<count<<endl;
}
void main()
{
 queens_1();
}

程序思想比較簡單,最后可知共92種擺放方法。如果能夠排除那些沒有前途的狀態,會節約時間——回溯法(走不通,就回頭)。

bool check_2 (int a[ ],int n)
{//多次被調用,只需一重循環 
 for(int i=1;i<=n-1;i++)
 {
  if((abs(a[i]-a[n])==n-i)||(a[i]==a[n]))
   return false;
 }  
 return true;
}
void queens_2()
{
 int a[9];
 int count = 0;
 for(a[1]=1;a[1]<=8;a[1]++)
 {
  for(a[2]=1;a[2]<=8;a[2]++)
  {
   if (!check_2(a,2)) continue;
   for(a[3]=1;a[3]<=8;a[3]++)
   {
    if (!check_2(a,3)) continue;
    for(a[4]=1;a[4]<=8;a[4]++)
    {
     if (!check_2(a,4)) continue;
     for(a[5]=1;a[5]<=8;a[5]++)
     {
      if (!check_2(a,5)) continue;
      for(a[6]=1;a[6]<=8;a[6]++)
      {
       if (!check_2(a,6)) continue;
       for(a[7]=1;a[7]<=8;a[7]++)
       {
        if (!check_2(a,7)) continue;
        for(a[8]=1;a[8]<=8;a[8]++)
        {
         if (!check_2(a,8)) 
          continue;
         else
         {
          for(int i=1;i<=8;i++) 
          {
           cout<<a[i];
          }
          cout<<endl;
          count++;
         }
        }
       }
      }
     }
    }
   }
  }
 }
 cout<<count<<endl;
}
void main()
{
 queens_2();
}

n此算法可讀性很好,體現了“回溯”。但它只針對八皇后問題,解決任意的n皇后問題還要修改程序結構。如果要解決n皇后的問題,就需要將n作為參數傳遞給函數,函數需要重寫來實現回溯(不能采用級聯的for循環,n不確定);從另一方面,程序中出現了大量的for循環,而且for中的函數結構很相似,自然想到的是遞歸迭代回溯。這就是回溯比較常用的兩種實現方法:非遞歸回溯和遞歸回溯。

非遞歸回溯的程序實現:

void backdate (int n)
{ 
 int count = 0;
 int a[100];
 int k = 1;
 a[1]=0; 
 while(k>0)
 {
  a[k]=a[k]+1;//對應for循環的1~n
  while((a[k]<=n)&&(!check_2(a,k)))//搜索第k個皇后位置
  {
   a[k]=a[k]+1;
  }
  if(a[k]<=n)//找到了合理的位置
  {
   if(k==n )
   {//找到一組解
    for(int i=1;i<=8;i++) 
    {
     cout<<a[i];
    }
    cout<<endl;
    count++;
   } 
   else 
   {
    k=k+1;//繼續為第k+1個皇后找到位置,對應下一級for循環 
    a[k]=0;//下一個皇后一定要從頭開始搜索
   }
  }
  else
  {
   k=k-1;//回溯,對應執行外內層for循環回到更上層 
  }
 }
 cout<<count<<endl;
}
void main()
{
 backdate(8);
}

這樣也可以得到,8皇后問題的92中結果。更簡單、可讀的方法是采用遞歸的方式,如下:

int a[100], n, count;
void backtrack(int k)
{
 if (k>n)//找到解
 {
  for(int i=1;i<=8;i++) 
  {
   cout<<a[i];
  }
  cout<<endl;
  count++;
 }
 else
 {
  for (int i = 1;i <=n; i++)
  {
   a[k] = i;
   if (check_2(a,k) == 1)
   {backtrack(k+1);}
  }
 }
}
void main()
{
 n=8,count=0;
 backtrack(1);
 cout<<count<<endl;
}

可見,遞歸調用大大減少了代碼量,也增加了程序的可讀性。給出其中的一個解,如下:

C++基于回溯法如何解決八皇后問題

感謝各位的閱讀!關于“C++基于回溯法如何解決八皇后問題”這篇文章就分享到這里了,希望以上內容可以對大家有一定的幫助,讓大家可以學到更多知識,如果覺得文章不錯,可以把它分享出去讓更多的人看到吧!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

c++
AI

上高县| 英超| 富民县| 吉林市| 涞水县| 玉山县| 响水县| 顺平县| 岚皋县| 南召县| 本溪市| 随州市| 汽车| 长乐市| 霍州市| 黎川县| 唐海县| 衢州市| 滕州市| 宣汉县| 芒康县| 北宁市| 准格尔旗| 茌平县| 南城县| 泌阳县| 江西省| 密山市| 建平县| 台南市| 定西市| 麻江县| 石首市| 康平县| 定结县| 北票市| 犍为县| 涿鹿县| 古蔺县| 哈巴河县| 郧西县|