91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

python 3利用Dlib 19.7實現攝像頭人臉檢測特征點標定

發布時間:2020-10-03 21:18:28 來源:腳本之家 閱讀:181 作者:TimeStamp 欄目:開發技術

Python 3 利用 Dlib 19.7 實現攝像頭人臉檢測特征點標定

0.引言

利用python開發,借助Dlib庫捕獲攝像頭中的人臉,進行實時特征點標定;

python 3利用Dlib 19.7實現攝像頭人臉檢測特征點標定

圖1 工程效果示例(gif)

python 3利用Dlib 19.7實現攝像頭人臉檢測特征點標定

圖2 工程效果示例(靜態圖片)

(實現比較簡單,代碼量也比較少,適合入門或者興趣學習。)

1.開發環境

  python:  3.6.3

  dlib:    19.7

  OpenCv, numpy

import dlib     # 人臉識別的庫dlib
import numpy as np # 數據處理的庫numpy
import cv2     # 圖像處理的庫OpenCv 

2.源碼介紹

  其實實現很簡單,主要分為兩個部分:攝像頭調用+人臉特征點標定

2.1 攝像頭調用

  介紹下opencv中攝像頭的調用方法;

  利用 cap = cv2.VideoCapture(0) 創建一個對象;

  (具體可以參考官方文檔)

# 2018-2-26
# By TimeStamp
# cnblogs: http://www.cnblogs.com/AdaminXie

"""
cv2.VideoCapture(), 創建cv2攝像頭對象/ open the default camera

  Python: cv2.VideoCapture() → <VideoCapture object>

  Python: cv2.VideoCapture(filename) → <VideoCapture object>  
  filename – name of the opened video file (eg. video.avi) or image sequence (eg. img_%02d.jpg, which will read samples like img_00.jpg, img_01.jpg, img_02.jpg, ...)

  Python: cv2.VideoCapture(device) → <VideoCapture object>
  device – id of the opened video capturing device (i.e. a camera index). If there is a single camera connected, just pass 0.

"""
cap = cv2.VideoCapture(0)


"""
cv2.VideoCapture.set(propId, value),設置視頻參數;

  propId:
  CV_CAP_PROP_POS_MSEC Current position of the video file in milliseconds.
  CV_CAP_PROP_POS_FRAMES 0-based index of the frame to be decoded/captured next.
  CV_CAP_PROP_POS_AVI_RATIO Relative position of the video file: 0 - start of the film, 1 - end of the film.
  CV_CAP_PROP_FRAME_WIDTH Width of the frames in the video stream.
  CV_CAP_PROP_FRAME_HEIGHT Height of the frames in the video stream.
  CV_CAP_PROP_FPS Frame rate.
  CV_CAP_PROP_FOURCC 4-character code of codec.
  CV_CAP_PROP_FRAME_COUNT Number of frames in the video file.
  CV_CAP_PROP_FORMAT Format of the Mat objects returned by retrieve() .
  CV_CAP_PROP_MODE Backend-specific value indicating the current capture mode.
  CV_CAP_PROP_BRIGHTNESS Brightness of the image (only for cameras).
  CV_CAP_PROP_CONTRAST Contrast of the image (only for cameras).
  CV_CAP_PROP_SATURATION Saturation of the image (only for cameras).
  CV_CAP_PROP_HUE Hue of the image (only for cameras).
  CV_CAP_PROP_GAIN Gain of the image (only for cameras).
  CV_CAP_PROP_EXPOSURE Exposure (only for cameras).
  CV_CAP_PROP_CONVERT_RGB Boolean flags indicating whether images should be converted to RGB.
  CV_CAP_PROP_WHITE_BALANCE_U The U value of the whitebalance setting (note: only supported by DC1394 v 2.x backend currently)
  CV_CAP_PROP_WHITE_BALANCE_V The V value of the whitebalance setting (note: only supported by DC1394 v 2.x backend currently)
  CV_CAP_PROP_RECTIFICATION Rectification flag for stereo cameras (note: only supported by DC1394 v 2.x backend currently)
  CV_CAP_PROP_ISO_SPEED The ISO speed of the camera (note: only supported by DC1394 v 2.x backend currently)
  CV_CAP_PROP_BUFFERSIZE Amount of frames stored in internal buffer memory (note: only supported by DC1394 v 2.x backend currently)
  
  value: 設置的參數值/ Value of the property
"""
cap.set(3, 480)

"""
cv2.VideoCapture.isOpened(), 檢查攝像頭初始化是否成功 / check if we succeeded
返回true或false
"""
cap.isOpened()

""" 
cv2.VideoCapture.read([imgage]) -> retval,image, 讀取視頻 / Grabs, decodes and returns the next video frame
返回兩個值:
  一個是布爾值true/false,用來判斷讀取視頻是否成功/是否到視頻末尾
  圖像對象,圖像的三維矩陣
"""
flag, im_rd = cap.read()

2.2 人臉特征點標定

  調用預測器“shape_predictor_68_face_landmarks.dat”進行68點標定,這是dlib訓練好的模型,可以直接調用進行人臉68個人臉特征點的標定;

  具體可以參考我的另一篇博客(python3利用Dlib19.7實現人臉68個特征點標定); 

2.3 源碼

  實現的方法比較簡單:

  利用 cv2.VideoCapture() 創建攝像頭對象,然后利用 flag, im_rd = cv2.VideoCapture.read() 讀取攝像頭視頻,im_rd就是視頻中的一幀幀圖像;

  然后就類似于單張圖像進行人臉檢測,對這一幀幀的圖像im_rd利用dlib進行特征點標定,然后繪制特征點;

  你可以按下s鍵來獲取當前截圖,或者按下q鍵來退出攝像頭;

# 2018-2-26

# By TimeStamp
# cnblogs: http://www.cnblogs.com/AdaminXie
# github: https://github.com/coneypo/Dlib_face_detection_from_camera

import dlib           #人臉識別的庫dlib
import numpy as np       #數據處理的庫numpy
import cv2           #圖像處理的庫OpenCv

# dlib預測器
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')

# 創建cv2攝像頭對象
cap = cv2.VideoCapture(0)

# cap.set(propId, value)
# 設置視頻參數,propId設置的視頻參數,value設置的參數值
cap.set(3, 480)

# 截圖screenshoot的計數器
cnt = 0

# cap.isOpened() 返回true/false 檢查初始化是否成功
while(cap.isOpened()):

  # cap.read()
  # 返回兩個值:
  #  一個布爾值true/false,用來判斷讀取視頻是否成功/是否到視頻末尾
  #  圖像對象,圖像的三維矩陣
  flag, im_rd = cap.read()

  # 每幀數據延時1ms,延時為0讀取的是靜態幀
  k = cv2.waitKey(1)

  # 取灰度
  img_gray = cv2.cvtColor(im_rd, cv2.COLOR_RGB2GRAY)

  # 人臉數rects
  rects = detector(img_gray, 0)

  #print(len(rects))

  # 待會要寫的字體
  font = cv2.FONT_HERSHEY_SIMPLEX

  # 標68個點
  if(len(rects)!=0):
    # 檢測到人臉
    for i in range(len(rects)):
      landmarks = np.matrix([[p.x, p.y] for p in predictor(im_rd, rects[i]).parts()])

      for idx, point in enumerate(landmarks):
        # 68點的坐標
        pos = (point[0, 0], point[0, 1])

        # 利用cv2.circle給每個特征點畫一個圈,共68個
        cv2.circle(im_rd, pos, 2, color=(0, 255, 0))

        # 利用cv2.putText輸出1-68
        cv2.putText(im_rd, str(idx + 1), pos, font, 0.2, (0, 0, 255), 1, cv2.LINE_AA)
    cv2.putText(im_rd, "faces: "+str(len(rects)), (20,50), font, 1, (0, 0, 255), 1, cv2.LINE_AA)
  else:
    # 沒有檢測到人臉
    cv2.putText(im_rd, "no face", (20, 50), font, 1, (0, 0, 255), 1, cv2.LINE_AA)

  # 添加說明
  im_rd = cv2.putText(im_rd, "s: screenshot", (20, 400), font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
  im_rd = cv2.putText(im_rd, "q: quit", (20, 450), font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)

  # 按下s鍵保存
  if (k == ord('s')):
    cnt+=1
    cv2.imwrite("screenshoot"+str(cnt)+".jpg", im_rd)

  # 按下q鍵退出
  if(k==ord('q')):
    break

  # 窗口顯示
  cv2.imshow("camera", im_rd)

# 釋放攝像頭
cap.release()

# 刪除建立的窗口
cv2.destroyAllWindows()

如果對您有幫助,歡迎在GitHub上star本項目。

以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持億速云。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

梨树县| 成都市| 花垣县| 分宜县| 小金县| 衡阳市| 寻乌县| 阿荣旗| 和田市| 大英县| 凤台县| 博野县| 星子县| 赤水市| 阜南县| 兴业县| 花莲县| 苏尼特右旗| 西和县| 土默特右旗| 班玛县| 兴海县| 仲巴县| 深泽县| 永年县| 曲阳县| 雷州市| 梅州市| 仪征市| 永康市| 全南县| 牙克石市| 松桃| 邵阳县| 海盐县| 宝坻区| 昌江| 湖口县| 治多县| 溆浦县| 嘉义县|