91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

50行Python代碼實現人臉檢測功能

發布時間:2020-10-13 15:21:41 來源:腳本之家 閱讀:173 作者:強哥 欄目:開發技術

50行Python代碼實現人臉檢測功能 

現在的人臉識別技術已經得到了非常廣泛的應用,支付領域、身份驗證、美顏相機里都有它的應用。用iPhone的同學們應該對下面的功能比較熟悉

50行Python代碼實現人臉檢測功能 

iPhone的照片中有一個“人物”的功能,能夠將照片里的人臉識別出來并分類,背后的原理也是人臉識別技術。

這篇文章主要介紹怎樣用Python實現人臉檢測。人臉檢測是人臉識別的基礎。人臉檢測的目的是識別出照片里的人臉并定位面部特征點,人臉識別是在人臉檢測的基礎上進一步告訴你這個人是誰。

好了,介紹就到這里。接下來,開始準備我們的環境。

準備工作

本文的人臉檢測基于dlib,dlib依賴Boost和cmake,所以首先需要安裝這些包,以Ubuntu為例:

$ sudo apt-get install build-essential cmake 
$ sudo apt-get install libgtk-3-dev 
$ sudo apt-get install libboost-all-dev

我們的程序中還用到numpy,opencv,所以也需要安裝這些庫:

$ pip install numpy 
$ pip install scipy 
$ pip install opencv-python 
$ pip install dlib

人臉檢測基于事先訓練好的模型數據,從這里可以下到模型數據

http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2

下載到本地路徑后解壓,記下解壓后的文件路徑,程序中會用到。

dlib的人臉特征點

上面下載的模型數據是用來估計人臉上68個特征點(x, y)的坐標位置,這68個坐標點的位置如下圖所示

50行Python代碼實現人臉檢測功能 

我們的程序將包含兩個步驟:

第一步,在照片中檢測人臉的區域

第二部,在檢測到的人臉區域中,進一步檢測器官(眼睛、鼻子、嘴巴、下巴、眉毛)

人臉檢測代碼

我們先來定義幾個工具函數:

def rect_to_bb(rect): 
  x = rect.left() 
  y = rect.top() 
  w = rect.right() - x 
  h = rect.bottom() - y   
  return (x, y, w, h)

這個函數里的rect是dlib臉部區域檢測的輸出。這里將rect轉換成一個序列,序列的內容是矩形區域的邊界信息。

def shape_to_np(shape, dtype="int"): 
  coords = np.zeros((68, 2), dtype=dtype)   
  for i in range(0, 68): 
      coords[i] = (shape.part(i).x, shape.part(i).y)   
  return coords

這個函數里的shape是dlib臉部特征檢測的輸出,一個shape里包含了前面說到的臉部特征的68個點。這個函數將shape轉換成Numpy array,為方便后續處理。

def resize(image, width=1200): 
  r = width * 1.0 / image.shape[1] 
  dim = (width, int(image.shape[0] * r)) 
  resized = cv2.resize(image, dim, interpolation=cv2.INTER_AREA)   
  return resized

這個函數里的image就是我們要檢測的圖片。在人臉檢測程序的最后,我們會顯示檢測的結果圖片來驗證,這里做resize是為了避免圖片過大,超出屏幕范圍。

接下來,開始我們的主程序部分

import sys import numpy as np 
import dlib import cv2 
if len(sys.argv) < 2:   
  print "Usage: %s <image file>" % sys.argv[0] 
  sys.exit(1) 
image_file = sys.argv[1] 
detector = dlib.get_frontal_face_detector() 
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")

我們從sys.argv[1]參數中讀取要檢測人臉的圖片,接下來初始化人臉區域檢測的detector和人臉特征檢測的predictor。shape_predictor中的參數就是我們之前解壓后的文件的路徑。

image = cv2.imread(image_file) 
image = resize(image, width=1200) 
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 
rects = detector(gray, 1)

在檢測特征區域前,我們先要檢測人臉區域。這段代碼調用opencv加載圖片,resize到合適的大小,轉成灰度圖,最后用detector檢測臉部區域。因為一張照片可能包含多張臉,所以這里得到的是一個包含多張臉的信息的數組rects。

for (i, rect) in enumerate(rects): 
  shape = predictor(gray, rect) 
  shape = shape_to_np(shape) 
  (x, y, w, h) = rect_to_bb(rect) 
  cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2) 
  cv2.putText(image, "Face #{}".format(i + 1), (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)   
for (x, y) in shape: 
      cv2.circle(image, (x, y), 2, (0, 0, 255), -1) 
cv2.imshow("Output", image) 
cv2.waitKey(0)

對于每一張檢測到的臉,我們進一步檢測臉部的特征(鼻子、眼睛、眉毛等)。對于臉部區域,我們用綠色的框在照片上標出;對于臉部特征,我們用紅色的點標出來。

最后我們把加了檢測標識的照片顯示出來,waitKey(0)表示按任意鍵可退出程序。

以上是我們程序的全部

測試

接下來是令人興奮的時刻,檢驗我們結果的時刻到來了。

下面是原圖

50行Python代碼實現人臉檢測功能 

下面是程序識別的結果

50行Python代碼實現人臉檢測功能 

可以看到臉部區域被綠色的長方形框起來了,臉上的特征(鼻子,眼睛等)被紅色點點標識出來了。

總結

以上所述是小編給大家介紹的50行Python代碼實現人臉檢測功能,希望對大家有所幫助,如果大家有任何疑問請給我留言,小編會及時回復大家的。在此也非常感謝大家對億速云網站的支持!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

安平县| 磴口县| 基隆市| 琼结县| 康定县| 天峨县| 任丘市| 荣昌县| 娄烦县| 夹江县| 九台市| 花莲市| 威海市| 泸水县| 河西区| 宁明县| 古浪县| 长汀县| 古丈县| 贵定县| 泾川县| 卢龙县| 南投市| 墨江| 怀安县| 丽水市| 瑞安市| 汕头市| 保山市| 武宣县| 固始县| 缙云县| 大宁县| 临夏市| 临沭县| 图片| 平果县| 清水河县| 奉节县| 新昌县| 广南县|