您好,登錄后才能下訂單哦!
小編給大家分享一下Python+Dlib+Opencv實現人臉采集功能的方法,希望大家閱讀完這篇文章后大所收獲,下面讓我們一起去探討方法吧!
一、dlib以及opencv-python庫安裝
介于我使用的是jupyter notebook,所以在安裝dlib和opencv-python時是在
這個命令行安裝的
dlib安裝方法:
1.若可以,直接使用上圖所示命令行輸入以下命令:
pip install cmake
pip install boost
pip install dlib
若安裝了visual studio2019應該就可以直接pip install dlib,至少我是這樣
由于很多在執行第三句時都會報錯,所以這里提供第二種辦法
2.去dlib官網:http://dlib.net/ 或者 https://github.com/davisking/dlib 下載壓縮包
下載完成后,解壓縮
在安裝dlib前需要安裝Boost和Cmake,dlib19之后你需要安裝vs2015以上的IDE,本人是安裝的vs2019,(建議先安裝好VS之后再安裝Cmake和 boost)
Cmake安裝
官網下載安裝包:https://cmake.org/download/
我下的是
直接安裝之后,配置環境變量
Boost下載
安裝boost:下載地址:http://www.boost.org/
如果vs安裝的是2015以上的版本,可以直接進行下一步,最好安裝最新版本,不然會找不到b2命令
下載之后將其解壓縮,進入boost_1_73_0文件夾中,找到bootstrap.bat批處理文件,雙擊運行,等待運行完成后(命令行自動消失)會生成兩個文件b2.exe和bjam.exe
然后將這兩個文件復制到boost_1_73_0根文件夾下:
同樣開啟一個命令行,定位到這個文件夾,運行命令:
b2 install
這個安裝需要一段時間,耐心等候。
利用b2編譯庫文件:
b2 -a –with-python address-model=64 toolset=msvc runtime-link=static
之前你cmake下載的64位這里(address-model)寫64,如果是32位的就把之前的64改成32
安裝完成后配置boost環境變量
安裝dlib
進入你的dlib解壓路徑,輸入python setup.py install
成功之后會在文件夾中看見dlib和dlib.egg-info ,將這兩個文件夾復制到你的python安裝的目錄下的Lib文件中:
—>例如我的python環境為python2.7,
—>所以將其放在python2-7文件夾的Python2-7\Lib\site-packages中
—>這時,就已經完成了dlib的配置
opencv-python安裝方法
在Anaconda Prompt下輸入以下命令
pip install opencv-python
但如果一直失敗,建議在Anaconda Prompt下輸入以下命令
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-python
二、dlib的68點模型
dlib的68點模型,使用網絡上大神訓練好的特征預測器,用來進行python代碼人臉識別的特征預測。
三、Python實現人臉識別&表情判別
""" 從視屏中識別人臉,并實時標出面部特征點 """ import sys import dlib # 人臉識別的庫dlib import numpy as np # 數據處理的庫numpy import cv2 # 圖像處理的庫OpenCv class face_emotion(): def __init__(self): # 使用特征提取器get_frontal_face_detector self.detector = dlib.get_frontal_face_detector() # dlib的68點模型,使用作者訓練好的特征預測器 self.predictor = dlib.shape_predictor("F:/face.dat") # 建cv2攝像頭對象,這里使用電腦自帶攝像頭,如果接了外部攝像頭,則自動切換到外部攝像頭 self.cap = cv2.VideoCapture(0) # 設置視頻參數,propId設置的視頻參數,value設置的參數值 self.cap.set(3, 480) # 截圖screenshoot的計數器 self.cnt = 0 def learning_face(self): # 眉毛直線擬合數據緩沖 line_brow_x = [] line_brow_y = [] # cap.isOpened() 返回true/false 檢查初始化是否成功 while (self.cap.isOpened()): # cap.read() # 返回兩個值: # 一個布爾值true/false,用來判斷讀取視頻是否成功/是否到視頻末尾 # 圖像對象,圖像的三維矩陣 flag, im_rd = self.cap.read() # 每幀數據延時1ms,延時為0讀取的是靜態幀 k = cv2.waitKey(1) # 取灰度 img_gray = cv2.cvtColor(im_rd, cv2.COLOR_RGB2GRAY) # 使用人臉檢測器檢測每一幀圖像中的人臉。并返回人臉數rects faces = self.detector(img_gray, 0) # 待會要顯示在屏幕上的字體 font = cv2.FONT_HERSHEY_SIMPLEX # 如果檢測到人臉 if (len(faces) != 0): # 對每個人臉都標出68個特征點 for i in range(len(faces)): # enumerate方法同時返回數據對象的索引和數據,k為索引,d為faces中的對象 for k, d in enumerate(faces): # 用紅色矩形框出人臉 cv2.rectangle(im_rd, (d.left(), d.top()), (d.right(), d.bottom()), (0, 0, 255)) # 計算人臉熱別框邊長 self.face_width = d.right() - d.left() # 使用預測器得到68點數據的坐標 shape = self.predictor(im_rd, d) # 圓圈顯示每個特征點 for i in range(68): cv2.circle(im_rd, (shape.part(i).x, shape.part(i).y), 2, (0, 255, 0), -1, 8) # cv2.putText(im_rd, str(i), (shape.part(i).x, shape.part(i).y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, # (255, 255, 255)) # 分析任意n點的位置關系來作為表情識別的依據 mouth_width = (shape.part(54).x - shape.part(48).x) / self.face_width # 嘴巴咧開程度 mouth_higth = (shape.part(66).y - shape.part(62).y) / self.face_width # 嘴巴張開程度 # print("嘴巴寬度與識別框寬度之比:",mouth_width_arv) # print("嘴巴高度與識別框高度之比:",mouth_higth_arv) # 通過兩個眉毛上的10個特征點,分析挑眉程度和皺眉程度 brow_sum = 0 # 高度之和 frown_sum = 0 # 兩邊眉毛距離之和 for j in range(17, 21): brow_sum += (shape.part(j).y - d.top()) + (shape.part(j + 5).y - d.top()) frown_sum += shape.part(j + 5).x - shape.part(j).x line_brow_x.append(shape.part(j).x) line_brow_y.append(shape.part(j).y) # self.brow_k, self.brow_d = self.fit_slr(line_brow_x, line_brow_y) # 計算眉毛的傾斜程度 tempx = np.array(line_brow_x) tempy = np.array(line_brow_y) z1 = np.polyfit(tempx, tempy, 1) # 擬合成一次直線 self.brow_k = -round(z1[0], 3) # 擬合出曲線的斜率和實際眉毛的傾斜方向是相反的 brow_hight = (brow_sum / 10) / self.face_width # 眉毛高度占比 brow_width = (frown_sum / 5) / self.face_width # 眉毛距離占比 # print("眉毛高度與識別框高度之比:",round(brow_arv/self.face_width,3)) # print("眉毛間距與識別框高度之比:",round(frown_arv/self.face_width,3)) # 眼睛睜開程度 eye_sum = (shape.part(41).y - shape.part(37).y + shape.part(40).y - shape.part(38).y + shape.part(47).y - shape.part(43).y + shape.part(46).y - shape.part(44).y) eye_hight = (eye_sum / 4) / self.face_width # print("眼睛睜開距離與識別框高度之比:",round(eye_open/self.face_width,3)) # 分情況討論 # 張嘴,可能是開心或者驚訝 if round(mouth_higth >= 0.03): if eye_hight >= 0.056: cv2.putText(im_rd, "amazing", (d.left(), d.bottom() + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2, 4) else: cv2.putText(im_rd, "happy", (d.left(), d.bottom() + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2, 4) # 沒有張嘴,可能是正常和生氣 else: if self.brow_k <= -0.3: cv2.putText(im_rd, "angry", (d.left(), d.bottom() + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2, 4) else: cv2.putText(im_rd, "nature", (d.left(), d.bottom() + 20), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2, 4) # 標出人臉數 cv2.putText(im_rd, "Faces: " + str(len(faces)), (20, 50), font, 1, (0, 0, 255), 1, cv2.LINE_AA) else: # 沒有檢測到人臉 cv2.putText(im_rd, "No Face", (20, 50), font, 1, (0, 0, 255), 1, cv2.LINE_AA) # 添加說明 im_rd = cv2.putText(im_rd, "S: screenshot", (20, 400), font, 0.8, (0, 0, 255), 1, cv2.LINE_AA) im_rd = cv2.putText(im_rd, "Q: quit", (20, 450), font, 0.8, (0, 0, 255), 1, cv2.LINE_AA) # 按下s鍵截圖保存 if (k == ord('s')): self.cnt += 1 cv2.imwrite("screenshoot" + str(self.cnt) + ".jpg", im_rd) # 按下q鍵退出 if (k == ord('q')): break # 窗口顯示 cv2.imshow("camera", im_rd) # 釋放攝像頭 self.cap.release() # 刪除建立的窗口 cv2.destroyAllWindows() if __name__ == "__main__": my_face = face_emotion() my_face.learning_face()
看完了這篇文章,相信你對Python+Dlib+Opencv實現人臉采集功能的方法有了一定的了解,想了解更多相關知識,歡迎關注億速云行業資訊頻道,感謝各位的閱讀!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。