91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

python merge、concat合并數據集的實例講解

發布時間:2020-10-24 19:14:38 來源:腳本之家 閱讀:123 作者:LY_ysys629 欄目:開發技術

數據規整化:合并、清理、過濾

pandas和python標準庫提供了一整套高級、靈活的、高效的核心函數和算法將數據規整化為你想要的形式!

本篇博客主要介紹:

合并數據集:.merge()、.concat()等方法,類似于SQL或其他關系型數據庫的連接操作。

合并數據集

1) merge 函數參數

參數 說明
left 參與合并的左側DataFrame
right 參與合并的右側DataFrame
how 連接方式:‘inner'(默認);還有,‘outer'、‘left'、‘right'
on 用于連接的列名,必須同時存在于左右兩個DataFrame對象中,如果位指定,則以left和right列名的交集作為連接鍵
left_on 左側DataFarme中用作連接鍵的列
right_on 右側DataFarme中用作連接鍵的列
left_index 將左側的行索引用作其連接鍵
right_index 將右側的行索引用作其連接鍵
sort 根據連接鍵對合并后的數據進行排序,默認為True。有時在處理大數據集時,禁用該選項可獲得更好的性能
suffixes 字符串值元組,用于追加到重疊列名的末尾,默認為(‘_x',‘_y').例如,左右兩個DataFrame對象都有‘data',則結果中就會出現‘data_x',‘data_y'
copy 設置為False,可以在某些特殊情況下避免將數據復制到結果數據結構中。默認總是賦值

1、多對一的合并(一個表的連接鍵列有重復值,另一個表中的連接鍵沒有重復值)

import pandas as pd
import numpy as np

df1 = pd.DataFrame({'key':['b','b','a','c','a','a','b'],'data1': range(7)})

df1

data1 key
0 0 b
1 1 b
2 2 a
3 3 c
4 4 a
5 5 a
6 6 b

df2 = pd.DataFrame({'key':['a','b','d'],'data2':range(3)})

df2

data2 key
0 0 a
1 1 b
2 2 d

pd.merge(df1,df2)#默認情況

data1 key data2
0 0 b 1
1 1 b 1
2 6 b 1
3 2 a 0
4 4 a 0
5 5 a 0

df1.merge(df2)

data1 key data2
0 0 b 1
1 1 b 1
2 6 b 1
3 2 a 0
4 4 a 0
5 5 a 0

df1.merge(df2,on = 'key',how = 'inner')#內連接,取交集

data1 key data2
0 0 b 1
1 1 b 1
2 6 b 1
3 2 a 0
4 4 a 0
5 5 a 0

df1.merge(df2,on = 'key',how = 'outer')#外鏈接,取并集,并用nan填充

data1 key data2
0 0.0 b 1.0
1 1.0 b 1.0
2 6.0 b 1.0
3 2.0 a 0.0
4 4.0 a 0.0
5 5.0 a 0.0
6 3.0 c NaN
7 NaN d 2.0

df1.merge(df2,on = 'key',how = 'left')#左連接,左側DataFrame取全部,右側DataFrame取部分

data1 key data2
0 0 b 1.0
1 1 b 1.0
2 2 a 0.0
3 3 c NaN
4 4 a 0.0
5 5 a 0.0
6 6 b 1.0

df1.merge(df2,on = 'key',how = 'right')#右連接,右側DataFrame取全部,左側DataFrame取部分

data1 key data2
0 0.0 b 1
1 1.0 b 1
2 6.0 b 1
3 2.0 a 0
4 4.0 a 0
5 5.0 a 0
6 NaN d 2

如果左右側DataFrame的連接鍵列名不一致,但是取值有重疊,可使用left_on、right_on來指定左右連接鍵

df3 = pd.DataFrame({'lkey':['b','b','a','c','a','a','b'],'data1': range(7)})

df3

data1 lkey
0 0 b
1 1 b
2 2 a
3 3 c
4 4 a
5 5 a
6 6 b

df4 = pd.DataFrame({'rkey':['a','b','d'],'data2':range(3)})

df4

data2 rkey
0 0 a
1 1 b
2 2 d

df3.merge(df4,left_on = 'lkey',right_on = 'rkey',how = 'inner')

data1 lkey data2 rkey
0 0 b 1 b
1 1 b 1 b
2 6 b 1 b
3 2 a 0 a
4 4 a 0 a
5 5 a 0 a

2、多對多的合并(一個表的連接鍵列有重復值,另一個表中的連接鍵有重復值)

df1 = pd.DataFrame({'key':['b','b','a','c','a','a','b'],'data1': range(7)})

df1

data1 key
0 0 b
1 1 b
2 2 a
3 3 c
4 4 a
5 5 a
6 6 b

df5 = pd.DataFrame({'key':['a','b','a','b','b'],'data2': range(5)})
df5

data2 key
0 0 a
1 1 b
2 2 a
3 3 b
4 4 b

df1.merge(df5)

data1 key data2
0 0 b 1
1 0 b 3
2 0 b 4
3 1 b 1
4 1 b 3
5 1 b 4
6 6 b 1
7 6 b 3
8 6 b 4
9 2 a 0
10 2 a 2
11 4 a 0
12 4 a 2
13 5 a 0
14 5 a 2

合并小結

1)默認情況下,會將兩個表中相同列名作為連接鍵

2)多對多,會采用笛卡爾積形式鏈接(左表連接鍵有三個值‘1,3,5',右表有兩個值‘2,3',則會形成,(1,2)(1,3)(3,1),(3,2)。。。6種組合)

3)存在多個連接鍵的處理

left = pd.DataFrame({'key1':['foo','foo','bar'],'key2':['one','one','two'],'lval':[1,2,3]})

right = pd.DataFrame({'key1':['foo','foo','bar','bar'],'key2':['one','one','one','two'],'rval':[4,5,6,7]})
left

key1 key2 lval
0 foo one 1
1 foo one 2
2 bar two 3

right

key1 key2 rval
0 foo one 4
1 foo one 5
2 bar one 6
3 bar two 7

pd.merge(left,right,on = ['key1','key2'],how = 'outer')
key1 key2 lval rval
0 foo one 1.0 4
1 foo one 1.0 5
2 foo one 2.0 4
3 foo one 2.0 5
4 bar two 3.0 7
5 bar one NaN 6

1)連接鍵是多對多關系,應執行笛卡爾積形式

2)多列應看連接鍵值對是否一致

4)對連接表中非連接列的重復列名的處理

pd.merge(left,right,on = 'key1')

key1 key2_x lval key2_y rval
0 foo one 1 one 4
1 foo one 1 one 5
2 foo one 2 one 4
3 foo one 2 one 5
4 bar two 3 one 6
5 bar two 3 two 7

pd.merge(left,right,on = 'key1',suffixes = ('_left','_right'))

key1 key2_left lval key2_right rval
0 foo one 1 one 4
1 foo one 1 one 5
2 foo one 2 one 4
3 foo one 2 one 5
4 bar two 3 one 6
5 bar two 3 two 7

2)索引上的合并

當連接鍵位于索引中時,成為索引上的合并,可以通過merge函數,傳入left_index、right_index來說明應該被索引的情況。

一表中連接鍵是索引列、另一表連接鍵是非索引列

left1 = pd.DataFrame({'key':['a','b','a','a','b','c'],'value': range(6)})
left1

key value
0 a 0
1 b 1
2 a 2
3 a 3
4 b 4
5 c 5

right1 = pd.DataFrame({'group_val':[3.5,7]},index = ['a','b'])
right1

group_val
a 3.5
b 7.0

pd.merge(left1,right1,left_on = 'key',right_index = True)
key value group_val
0 a 0 3.5
2 a 2 3.5
3 a 3 3.5
1 b 1 7.0
4 b 4 7.0

有上可知,left_on、right_on是指定表中非索引列為連接鍵,left_index、right_index是指定表中索引列為連接鍵,兩者可以組合,是為了區分是否是索引列

兩個表中的索引列都是連接鍵

left2 = pd.DataFrame(np.arange(6).reshape(3,2),index = ['a','b','e'],columns = ['0hio','nevada'])

right2 = pd.DataFrame(np.arange(7,15).reshape(4,2),index = ['b','c','d','e'],columns = ['misso','ala'])

left2

0hio nevada
a 0 1
b 2 3
e 4 5

right2

misso ala
b 7 8
c 9 10
d 11 12
e 13 14

pd.merge(left2,right2,left_index = True,right_index = True,how = 'outer')
0hio nevada misso ala
a 0.0 1.0 NaN NaN
b 2.0 3.0 7.0 8.0
c NaN NaN 9.0 10.0
d NaN NaN 11.0 12.0
e 4.0 5.0 13.0 14.0

3)軸向連接

在這里展示一種新的連接方法,對應于numpy的concatenate函數,pandas有concat函數

#numpy
arr =np.arange(12).reshape(3,4)
arr
 array([[ 0, 1, 2, 3],
   [ 4, 5, 6, 7],
   [ 8, 9, 10, 11]])
np.concatenate([arr,arr],axis = 1)#橫軸連接塊
 
 array([[ 0, 1, 2, 3, 0, 1, 2, 3],
   [ 4, 5, 6, 7, 4, 5, 6, 7],
   [ 8, 9, 10, 11, 8, 9, 10, 11]])

concat函數參數表格

參數 說明
objs 參與連接的列表或字典,且列表或字典里的對象是pandas數據類型,唯一必須給定的參數
axis=0 指明連接的軸向,0是縱軸,1是橫軸,默認是0
join ‘inner'(交集),‘outer'(并集),默認是‘outer'指明軸向索引的索引是交集還是并集
join_axis 指明用于其他n-1條軸的索引(層次化索引,某個軸向有多個索引),不執行交并集
keys 與連接對象有關的值,用于形成連接軸向上的層次化索引(外層索引),可以是任意值的列表或數組、元組數據、數組列表(如果將levels設置成多級數組的話)
levels 指定用作層次化索引各級別(內層索引)上的索引,如果設置keys的話
names 用于創建分層級別的名稱,如果設置keys或levels的話
verify_integrity 檢查結果對象新軸上的重復情況,如果發橫則引發異常,默認False,允許重復
ignore_index 不保留連接軸上的索引,產生一組新索引range(total_length)

s1 = pd.Series([0,1,2],index = ['a','b','c'])

s2 = pd.Series([2,3,4],index = ['c','f','e'])

s3 = pd.Series([4,5,6],index = ['c','f','g'])
pd.concat([s1,s2,s3])#默認并集、縱向連接

a 0 b 1 c 2 c 2 f 3 e 4 c 4 f 5 g 6 dtype: int64

pd.concat([s1,s2,s3],ignore_index = True)#生成縱軸上的并集,索引會自動生成新的一列

0 0 1 1 2 2 3 2 4 3 5 4 6 4 7 5 8 6 dtype: int64

pd.concat([s1,s2,s3],axis = 1,join = 'inner')#縱向取交集,注意該方法對對象表中有重復索引時失效

0 1 2
c 2 2 4

pd.concat([s1,s2,s3],axis = 1,join = 'outer')#橫向索引取并集,縱向索引取交集,注意該方法對對象表中有重復索引時失效
0 1 2
a 0.0 NaN NaN
b 1.0 NaN NaN
c 2.0 2.0 4.0
e NaN 4.0 NaN
f NaN 3.0 5.0
g NaN NaN 6.0

concat函數小結

1)縱向連接,ignore_index = False ,可能生成重復的索引

2)橫向連接時,對象索引不能重復

4)合并重疊數據

適用范圍:

1)當兩個對象的索引有部分或全部重疊時

2)用參數對象中的數據為調用者對象的缺失數據‘打補丁'

a = pd.Series([np.nan,2.5,np.nan,3.5,4.5,np.nan],index = ['a','b','c','d','e','f'])

b = pd.Series(np.arange(len(a)),index = ['a','b','c','d','e','f'])
a
a NaN
b 2.5
c NaN
d 3.5
e 4.5
f NaN
dtype: float64
b
a 0
b 1
c 2
d 3
e 4
f 5
dtype: int32
a.combine_first(b)#利用b填補了a的空值
a 0.0
b 2.5
c 2.0
d 3.5
e 4.5
f 5.0
dtype: float64
a = pd.Series([np.nan,2.5,np.nan,3.5,4.5,np.nan],index = ['g','b','c','d','e','f'])
a.combine_first(b)#部分索引重疊
a 0.0
b 2.5
c 2.0
d 3.5
e 4.5
f 5.0
g NaN
dtype: float64

小結

本篇博客主要講述了一下內容:

1) merge函數合并數據集

2)concat函數合并數據集

3)combine_first函數,含有重疊索引的缺失值填補

以上這篇python merge、concat合并數據集的實例講解就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持億速云。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

唐河县| 伊春市| 石泉县| 上思县| 平山县| 莲花县| 利津县| 阿拉善右旗| 崇明县| 木兰县| 女性| 盐亭县| 罗江县| 清水河县| 吐鲁番市| 察隅县| 屏南县| 石林| 龙游县| 彰化县| 凤阳县| 桃园县| 孟津县| 平武县| 健康| 本溪市| 厦门市| 安塞县| 赞皇县| 樟树市| 理塘县| 景洪市| 鲁甸县| 康定县| 荃湾区| 西畴县| 晋宁县| 连州市| 上栗县| 兰西县| 巴楚县|