您好,登錄后才能下訂單哦!
小編給大家分享一下如何使用keras做SQL注入攻擊判斷,相信大部分人都還不怎么了解,因此分享這篇文章給大家參考一下,希望大家閱讀完這篇文章后大有收獲,下面讓我們一起去了解一下吧!
通過深度學習框架keras來做SQL注入特征識別, 不過雖然用了keras,但是大部分還是普通的神經網絡,只是外加了一些規則化、dropout層(隨著深度學習出現的層)。
基本思路就是喂入一堆數據(INT型)、通過神經網絡計算(正向、反向)、SOFTMAX多分類概率計算得出各個類的概率,注意:這里只要2個類別:0-正常的文本;1-包含SQL注入的文本
文件分割上,做成了4個python文件:
util類,用來將char轉換成int(NN要的都是數字類型的,其他任何類型都要轉換成int/float這些才能喂入,又稱為feed)
data類,用來獲取訓練數據,驗證數據的類,由于這里的訓練是有監督訓練,因此此時需要返回的是個元組(x, y)
trainer類,keras的網絡模型建模在這里,包括損失函數、訓練epoch次數等
predict類,獲取幾個測試數據,看看效果的預測類
先放trainer類代碼,網絡定義在這里,最重要的一個,和數據格式一樣重要(呵呵,數據格式可是非常重要的,在這種程序中)
import SQL注入Data import numpy as np import keras from keras.models import Sequential from keras.layers import Dense, Dropout, Activation from keras.layers.normalization import BatchNormalization from keras.optimizers import SGD x, y=SQL注入Data.loadSQLInjectData() availableVectorSize=15 x=keras.preprocessing.sequence.pad_sequences(x, padding='post', maxlen=availableVectorSize) y=keras.utils.to_categorical(y, num_classes=2) model = Sequential() model.add(Dense(64, activation='relu', input_dim=availableVectorSize)) model.add(BatchNormalization()) model.add(Dropout(0.3)) model.add(Dense(64, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(2, activation='softmax')) sgd = SGD(lr=0.001, momentum=0.9) model.compile(loss='mse', optimizer=sgd, metrics=['accuracy']) history=model.fit(x, y,epochs=500,batch_size=16) model.save('E:\\sql_checker\\models\\trained_models.h6') print("DONE, model saved in path-->E:\\sql_checker\\models\\trained_models.h6") import matplotlib.pyplot as plt plt.plot(history.history['loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'test'], loc='upper left') plt.show()
先來解釋上面這段plt的代碼,因為最容易解釋,這段代碼是用來把每次epoch的訓練的損失loss value用折線圖表示出來:
何為訓練?何為損失loss value?
訓練的目的是為了想讓網絡最終計算出來的分類數據和我們給出的y一致,那不一致怎么算?不一致就是有損失,也就是說訓練的目的是要一致,也就是要損失最小化
怎么讓損失最小化?梯度下降,這里用的是SGD優化算法:
from keras.optimizers import SGD sgd = SGD(lr=0.001, momentum=0.9) model.compile(loss='mse', optimizer=sgd, metrics=['accuracy'])
上面這段代碼的loss='mse'就是定義了用那種損失函數,還有好幾種損失函數,大家自己參考啊。
optimizer=sgd就是優化算法用哪個了,不同的optimizer有不同的參數
由于此處用的是全連接NN,因此是需要固定的輸入size的,這個函數就是用來固定(不夠會補0) 特征向量size的:
x=keras.preprocessing.sequence.pad_sequences(x, padding='post', maxlen=availableVectorSize)
再來看看最終的分類輸出,是one hot的,這個one hot大家自己查查,很容易的定義,就是比較浪費空間,分類間沒有關聯性,不過用在這里很方便
y=keras.utils.to_categorical(y, num_classes=2)
然后再說說預測部分代碼:
import SQL注入Data import Converter import numpy as np import keras from keras.models import load_model print("predict....") x=SQL注入Data.loadTestSQLInjectData() x=keras.preprocessing.sequence.pad_sequences(x, padding='post', maxlen=15) model=load_model('E:\\sql_checker\\models\\trained_models.h6') result=model.predict_classes(x, batch_size=len(x)) result=Converter.convert2label(result) print(result) print("DONE")
這部分代碼很容易理解,并且連y都沒有
好了,似乎有那么點意思了吧。
下面把另外幾個工具類、數據類代碼放出來:
def toints(sentence): base=ord('0') ary=[] for c in sentence: ary.append(ord(c)-base) return ary def convert2label(vector): string_array=[] for v in vector: if v==1: string_array.append('SQL注入') else: string_array.append('正常文本') return string_array
import Converter import numpy as np def loadSQLInjectData(): x=[] x.append(Converter.toints("100")) x.append(Converter.toints("150")) x.append(Converter.toints("1")) x.append(Converter.toints("3")) x.append(Converter.toints("19")) x.append(Converter.toints("37")) x.append(Converter.toints("1'--")) x.append(Converter.toints("1' or 1=1;--")) x.append(Converter.toints("updatable")) x.append(Converter.toints("update tbl")) x.append(Converter.toints("update someb")) x.append(Converter.toints("update")) x.append(Converter.toints("updat")) x.append(Converter.toints("update a")) x.append(Converter.toints("'--")) x.append(Converter.toints("' or 1=1;--")) x.append(Converter.toints("aupdatable")) x.append(Converter.toints("hello world")) y=[[0],[0],[0],[0],[0],[0],[1],[1],[0],[1],[1],[0],[0],[1],[1],[1],[0],[0]] x=np.asarray(x) y=np.asarray(y) return x, y def loadTestSQLInjectData(): x=[] x.append(Converter.toints("some value")) x.append(Converter.toints("-1")) x.append(Converter.toints("' or 1=1;--")) x.append(Converter.toints("noupdate")) x.append(Converter.toints("update ")) x.append(Converter.toints("update")) x.append(Converter.toints("update z")) x=np.asarray(x) return x
以上是“如何使用keras做SQL注入攻擊判斷”這篇文章的所有內容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內容對大家有所幫助,如果還想學習更多知識,歡迎關注億速云行業資訊頻道!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。