您好,登錄后才能下訂單哦!
這篇文章給大家分享的是有關Pytorch如何實現手寫數字mnist識別功能的內容。小編覺得挺實用的,因此分享給大家做個參考,一起跟隨小編過來看看吧。
本文實例講述了Pytorch實現的手寫數字mnist識別功能。分享給大家供大家參考,具體如下:
import torch import torchvision as tv import torchvision.transforms as transforms import torch.nn as nn import torch.optim as optim import argparse # 定義是否使用GPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 定義網絡結構 class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.Sequential( #input_size=(1*28*28) nn.Conv2d(1, 6, 5, 1, 2), #padding=2保證輸入輸出尺寸相同 nn.ReLU(), #input_size=(6*28*28) nn.MaxPool2d(kernel_size=2, stride=2),#output_size=(6*14*14) ) self.conv2 = nn.Sequential( nn.Conv2d(6, 16, 5), nn.ReLU(), #input_size=(16*10*10) nn.MaxPool2d(2, 2) #output_size=(16*5*5) ) self.fc1 = nn.Sequential( nn.Linear(16 * 5 * 5, 120), nn.ReLU() ) self.fc2 = nn.Sequential( nn.Linear(120, 84), nn.ReLU() ) self.fc3 = nn.Linear(84, 10) # 定義前向傳播過程,輸入為x def forward(self, x): x = self.conv1(x) x = self.conv2(x) # nn.Linear()的輸入輸出都是維度為一的值,所以要把多維度的tensor展平成一維 x = x.view(x.size()[0], -1) x = self.fc1(x) x = self.fc2(x) x = self.fc3(x) return x #使得我們能夠手動輸入命令行參數,就是讓風格變得和Linux命令行差不多 parser = argparse.ArgumentParser() parser.add_argument('--outf', default='./model/', help='folder to output images and model checkpoints') #模型保存路徑 parser.add_argument('--net', default='./model/net.pth', help="path to netG (to continue training)") #模型加載路徑 opt = parser.parse_args() # 超參數設置 EPOCH = 8 #遍歷數據集次數 BATCH_SIZE = 64 #批處理尺寸(batch_size) LR = 0.001 #學習率 # 定義數據預處理方式 transform = transforms.ToTensor() # 定義訓練數據集 trainset = tv.datasets.MNIST( root='./data/', train=True, download=True, transform=transform) # 定義訓練批處理數據 trainloader = torch.utils.data.DataLoader( trainset, batch_size=BATCH_SIZE, shuffle=True, ) # 定義測試數據集 testset = tv.datasets.MNIST( root='./data/', train=False, download=True, transform=transform) # 定義測試批處理數據 testloader = torch.utils.data.DataLoader( testset, batch_size=BATCH_SIZE, shuffle=False, ) # 定義損失函數loss function 和優化方式(采用SGD) net = LeNet().to(device) criterion = nn.CrossEntropyLoss() # 交叉熵損失函數,通常用于多分類問題上 optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9) # 訓練 if __name__ == "__main__": for epoch in range(EPOCH): sum_loss = 0.0 # 數據讀取 for i, data in enumerate(trainloader): inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) # 梯度清零 optimizer.zero_grad() # forward + backward outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # 每訓練100個batch打印一次平均loss sum_loss += loss.item() if i % 100 == 99: print('[%d, %d] loss: %.03f' % (epoch + 1, i + 1, sum_loss / 100)) sum_loss = 0.0 # 每跑完一次epoch測試一下準確率 with torch.no_grad(): correct = 0 total = 0 for data in testloader: images, labels = data images, labels = images.to(device), labels.to(device) outputs = net(images) # 取得分最高的那個類 _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum() print('第%d個epoch的識別準確率為:%d%%' % (epoch + 1, (100 * correct / total))) #torch.save(net.state_dict(), '%s/net_%03d.pth' % (opt.outf, epoch + 1))
1.PyTorch是相當簡潔且高效快速的框架;2.設計追求最少的封裝;3.設計符合人類思維,它讓用戶盡可能地專注于實現自己的想法;4.與google的Tensorflow類似,FAIR的支持足以確保PyTorch獲得持續的開發更新;5.PyTorch作者親自維護的論壇 供用戶交流和求教問題6.入門簡單
感謝各位的閱讀!關于“Pytorch如何實現手寫數字mnist識別功能”這篇文章就分享到這里了,希望以上內容可以對大家有一定的幫助,讓大家可以學到更多知識,如果覺得文章不錯,可以把它分享出去讓更多的人看到吧!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。