91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Tensorflow訓練MNIST手寫數字識別模型

發布時間:2020-10-14 15:29:23 來源:腳本之家 閱讀:197 作者:Sebastien23 欄目:開發技術

本文實例為大家分享了Tensorflow訓練MNIST手寫數字識別模型的具體代碼,供大家參考,具體內容如下

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
 
INPUT_NODE = 784  # 輸入層節點=圖片像素=28x28=784
OUTPUT_NODE = 10  # 輸出層節點數=圖片類別數目
 
LAYER1_NODE = 500  # 隱藏層節點數,只有一個隱藏層
BATCH_SIZE = 100  # 一個訓練包中的數據個數,數字越小
          # 越接近隨機梯度下降,越大越接近梯度下降
 
LEARNING_RATE_BASE = 0.8   # 基礎學習率
LEARNING_RATE_DECAY = 0.99  # 學習率衰減率
 
REGULARIZATION_RATE = 0.0001  # 正則化項系數
TRAINING_STEPS = 30000     # 訓練輪數
MOVING_AVG_DECAY = 0.99    # 滑動平均衰減率
 
# 定義一個輔助函數,給定神經網絡的輸入和所有參數,計算神經網絡的前向傳播結果
def inference(input_tensor, avg_class, weights1, biases1,
       weights2, biases2):
 
 # 當沒有提供滑動平均類時,直接使用參數當前取值
 if avg_class == None:
  # 計算隱藏層前向傳播結果
  layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1)
  # 計算輸出層前向傳播結果
  return tf.matmul(layer1, weights2) + biases2
 else:
  # 首先計算變量的滑動平均值,然后計算前向傳播結果
  layer1 = tf.nn.relu(
    tf.matmul(input_tensor, avg_class.average(weights1)) +
    avg_class.average(biases1))
  
  return tf.matmul(
    layer1, avg_class.average(weights2)) + avg_class.average(biases2)
 
# 訓練模型的過程
def train(mnist):
 x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
 y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
 
 # 生成隱藏層參數
 weights1 = tf.Variable(
   tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1))
 biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE]))
 
 # 生成輸出層參數
 weights2 = tf.Variable(
   tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1))
 biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE]))
 
 # 計算前向傳播結果,不使用參數滑動平均值 avg_class=None
 y = inference(x, None, weights1, biases1, weights2, biases2)
 
 # 定義訓練輪數變量,指定為不可訓練
 global_step = tf.Variable(0, trainable=False)
 
 # 給定滑動平均衰減率和訓練輪數的變量,初始化滑動平均類
 variable_avgs = tf.train.ExponentialMovingAverage(
   MOVING_AVG_DECAY, global_step)
 
 # 在所有代表神經網絡參數的可訓練變量上使用滑動平均
 variables_avgs_op = variable_avgs.apply(tf.trainable_variables())
 
 # 計算使用滑動平均值后的前向傳播結果
 avg_y = inference(x, variable_avgs, weights1, biases1, weights2, biases2)
 
 # 計算交叉熵作為損失函數
 cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
   logits=y, labels=tf.argmax(y_, 1))
 cross_entropy_mean = tf.reduce_mean(cross_entropy)
 
 # 計算L2正則化損失函數
 regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
 regularization = regularizer(weights1) + regularizer(weights2)
 
 loss = cross_entropy_mean + regularization
 
 # 設置指數衰減的學習率
 learning_rate = tf.train.exponential_decay(
   LEARNING_RATE_BASE,
   global_step,              # 當前迭代輪數
   mnist.train.num_examples / BATCH_SIZE, # 過完所有訓練數據的迭代次數
   LEARNING_RATE_DECAY)
 
 
 # 優化損失函數
 train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(
   loss, global_step=global_step)
 
 # 反向傳播同時更新神經網絡參數及其滑動平均值
 with tf.control_dependencies([train_step, variables_avgs_op]):
  train_op = tf.no_op(name='train')
 
 # 檢驗使用了滑動平均模型的神經網絡前向傳播結果是否正確
 correct_prediction = tf.equal(tf.argmax(avg_y, 1), tf.argmax(y_, 1))
 accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
 
 
 # 初始化會話并開始訓練
 with tf.Session() as sess:
  tf.global_variables_initializer().run()
  
  # 準備驗證數據,用于判斷停止條件和訓練效果
  validate_feed = {x: mnist.validation.images,
          y_: mnist.validation.labels}
  
  # 準備測試數據,用于模型優劣的最后評價標準
  test_feed = {x: mnist.test.images, y_: mnist.test.labels}
  
  # 迭代訓練神經網絡
  for i in range(TRAINING_STEPS):
   if i%1000 == 0:
    validate_acc = sess.run(accuracy, feed_dict=validate_feed)
    print("After %d training step(s), validation accuracy using average " 
       "model is %g " % (i, validate_acc))
    
   xs, ys = mnist.train.next_batch(BATCH_SIZE)
   sess.run(train_op, feed_dict={x: xs, y_: ys})
  
  # 訓練結束后在測試集上檢測模型的最終正確率
  test_acc = sess.run(accuracy, feed_dict=test_feed)
  print("After %d training steps, test accuracy using average model "
     "is %g " % (TRAINING_STEPS, test_acc))
  
  
# 主程序入口
def main(argv=None):
 mnist = input_data.read_data_sets("/tmp/data", one_hot=True)
 train(mnist)
 
# Tensorflow主程序入口
if __name__ == '__main__':
 tf.app.run()

輸出結果如下:

Extracting /tmp/data/train-images-idx3-ubyte.gz
Extracting /tmp/data/train-labels-idx1-ubyte.gz
Extracting /tmp/data/t10k-images-idx3-ubyte.gz
Extracting /tmp/data/t10k-labels-idx1-ubyte.gz
After 0 training step(s), validation accuracy using average model is 0.0462 
After 1000 training step(s), validation accuracy using average model is 0.9784 
After 2000 training step(s), validation accuracy using average model is 0.9806 
After 3000 training step(s), validation accuracy using average model is 0.9798 
After 4000 training step(s), validation accuracy using average model is 0.9814 
After 5000 training step(s), validation accuracy using average model is 0.9826 
After 6000 training step(s), validation accuracy using average model is 0.9828 
After 7000 training step(s), validation accuracy using average model is 0.9832 
After 8000 training step(s), validation accuracy using average model is 0.9838 
After 9000 training step(s), validation accuracy using average model is 0.983 
After 10000 training step(s), validation accuracy using average model is 0.9836 
After 11000 training step(s), validation accuracy using average model is 0.9822 
After 12000 training step(s), validation accuracy using average model is 0.983 
After 13000 training step(s), validation accuracy using average model is 0.983 
After 14000 training step(s), validation accuracy using average model is 0.9844 
After 15000 training step(s), validation accuracy using average model is 0.9832 
After 16000 training step(s), validation accuracy using average model is 0.9844 
After 17000 training step(s), validation accuracy using average model is 0.9842 
After 18000 training step(s), validation accuracy using average model is 0.9842 
After 19000 training step(s), validation accuracy using average model is 0.9838 
After 20000 training step(s), validation accuracy using average model is 0.9834 
After 21000 training step(s), validation accuracy using average model is 0.9828 
After 22000 training step(s), validation accuracy using average model is 0.9834 
After 23000 training step(s), validation accuracy using average model is 0.9844 
After 24000 training step(s), validation accuracy using average model is 0.9838 
After 25000 training step(s), validation accuracy using average model is 0.9834 
After 26000 training step(s), validation accuracy using average model is 0.984 
After 27000 training step(s), validation accuracy using average model is 0.984 
After 28000 training step(s), validation accuracy using average model is 0.9836 
After 29000 training step(s), validation accuracy using average model is 0.9842 
After 30000 training steps, test accuracy using average model is 0.9839

以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持億速云。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

洛隆县| 武穴市| 翁牛特旗| 海安县| 新安县| 多伦县| 桓仁| 博兴县| 永清县| 光山县| 若尔盖县| 通化市| 福清市| 清新县| 聂荣县| 肃南| 浮梁县| 古蔺县| 尼勒克县| 嵊州市| 湘乡市| 平罗县| 黄陵县| 临潭县| 攀枝花市| 佛坪县| 上思县| 九江市| 东宁县| 涿鹿县| 德令哈市| 开江县| 明光市| 盐城市| 台中市| 乐业县| 乌审旗| 南阳市| 吉木乃县| 婺源县| 改则县|