您好,登錄后才能下訂單哦!
在pytorch下,以數萬首唐詩為素材,訓練雙層LSTM神經網絡,使其能夠以唐詩的方式寫詩。
代碼結構分為四部分,分別為
1.model.py,定義了雙層LSTM模型
2.data.py,定義了從網上得到的唐詩數據的處理方法
3.utlis.py 定義了損失可視化的函數
4.main.py定義了模型參數,以及訓練、唐詩生成函數。
參考:電子工業出版社的《深度學習框架PyTorch:入門與實踐》第九章
main代碼及注釋如下
import sys, os import torch as t from data import get_data from model import PoetryModel from torch import nn from torch.autograd import Variable from utils import Visualizer import tqdm from torchnet import meter import ipdb class Config(object): data_path = 'data/' pickle_path = 'tang.npz' author = None constrain = None category = 'poet.tang' #or poet.song lr = 1e-3 weight_decay = 1e-4 use_gpu = True epoch = 20 batch_size = 128 maxlen = 125 plot_every = 20 #use_env = True #是否使用visodm env = 'poety' #visdom env max_gen_len = 200 debug_file = '/tmp/debugp' model_path = None prefix_words = '細雨魚兒出,微風燕子斜。' #不是詩歌組成部分,是意境 start_words = '閑云潭影日悠悠' #詩歌開始 acrostic = False #是否藏頭 model_prefix = 'checkpoints/tang' #模型保存路徑 opt = Config() def generate(model, start_words, ix2word, word2ix, prefix_words=None): ''' 給定幾個詞,根據這幾個詞接著生成一首完整的詩歌 ''' results = list(start_words) start_word_len = len(start_words) # 手動設置第一個詞為<START> # 這個地方有問題,最后需要再看一下 input = Variable(t.Tensor([word2ix['<START>']]).view(1,1).long()) if opt.use_gpu:input=input.cuda() hidden = None if prefix_words: for word in prefix_words: output,hidden = model(input,hidden) # 下邊這句話是為了把input變成1*1? input = Variable(input.data.new([word2ix[word]])).view(1,1) for i in range(opt.max_gen_len): output,hidden = model(input,hidden) if i<start_word_len: w = results[i] input = Variable(input.data.new([word2ix[w]])).view(1,1) else: top_index = output.data[0].topk(1)[1][0] w = ix2word[top_index] results.append(w) input = Variable(input.data.new([top_index])).view(1,1) if w=='<EOP>': del results[-1] #-1的意思是倒數第一個 break return results def gen_acrostic(model,start_words,ix2word,word2ix, prefix_words = None): ''' 生成藏頭詩 start_words : u'深度學習' 生成: 深木通中岳,青苔半日脂。 度山分地險,逆浪到南巴。 學道兵猶毒,當時燕不移。 習根通古岸,開鏡出清羸。 ''' results = [] start_word_len = len(start_words) input = Variable(t.Tensor([word2ix['<START>']]).view(1,1).long()) if opt.use_gpu:input=input.cuda() hidden = None index=0 # 用來指示已經生成了多少句藏頭詩 # 上一個詞 pre_word='<START>' if prefix_words: for word in prefix_words: output,hidden = model(input,hidden) input = Variable(input.data.new([word2ix[word]])).view(1,1) for i in range(opt.max_gen_len): output,hidden = model(input,hidden) top_index = output.data[0].topk(1)[1][0] w = ix2word[top_index] if (pre_word in {u'。',u'!','<START>'} ): # 如果遇到句號,藏頭的詞送進去生成 if index==start_word_len: # 如果生成的詩歌已經包含全部藏頭的詞,則結束 break else: # 把藏頭的詞作為輸入送入模型 w = start_words[index] index+=1 input = Variable(input.data.new([word2ix[w]])).view(1,1) else: # 否則的話,把上一次預測是詞作為下一個詞輸入 input = Variable(input.data.new([word2ix[w]])).view(1,1) results.append(w) pre_word = w return results def train(**kwargs): for k,v in kwargs.items(): setattr(opt,k,v) #設置apt里屬性的值 vis = Visualizer(env=opt.env) #獲取數據 data, word2ix, ix2word = get_data(opt) #get_data是data.py里的函數 data = t.from_numpy(data) #這個地方出錯了,是大寫的L dataloader = t.utils.data.DataLoader(data, batch_size = opt.batch_size, shuffle = True, num_workers = 1) #在python里,這樣寫程序可以嗎? #模型定義 model = PoetryModel(len(word2ix), 128, 256) optimizer = t.optim.Adam(model.parameters(), lr=opt.lr) criterion = nn.CrossEntropyLoss() if opt.model_path: model.load_state_dict(t.load(opt.model_path)) if opt.use_gpu: model.cuda() criterion.cuda() #The tnt.AverageValueMeter measures and returns the average value #and the standard deviation of any collection of numbers that are #added to it. It is useful, for instance, to measure the average #loss over a collection of examples. #The add() function expects as input a Lua number value, which #is the value that needs to be added to the list of values to #average. It also takes as input an optional parameter n that #assigns a weight to value in the average, in order to facilitate #computing weighted averages (default = 1). #The tnt.AverageValueMeter has no parameters to be set at initialization time. loss_meter = meter.AverageValueMeter() for epoch in range(opt.epoch): loss_meter.reset() for ii,data_ in tqdm.tqdm(enumerate(dataloader)): #tqdm是python中的進度條 #訓練 data_ = data_.long().transpose(1,0).contiguous() #上邊一句話,把data_變成long類型,把1維和0維轉置,把內存調成連續的 if opt.use_gpu: data_ = data_.cuda() optimizer.zero_grad() input_, target = Variable(data_[:-1,:]), Variable(data_[1:,:]) #上邊一句,將輸入的詩句錯開一個字,形成訓練和目標 output,_ = model(input_) loss = criterion(output, target.view(-1)) loss.backward() optimizer.step() loss_meter.add(loss.data[0]) #為什么是data[0]? #可視化用到的是utlis.py里的函數 if (1+ii)%opt.plot_every ==0: if os.path.exists(opt.debug_file): ipdb.set_trace() vis.plot('loss',loss_meter.value()[0]) # 下面是對目前模型情況的測試,詩歌原文 poetrys = [[ix2word[_word] for _word in data_[:,_iii]] for _iii in range(data_.size(1))][:16] #上面句子嵌套了兩個循環,主要是將詩歌索引的前十六個字變成原文 vis.text('</br>'.join([''.join(poetry) for poetry in poetrys]),win = u'origin_poem') gen_poetries = [] #分別以以下幾個字作為詩歌的第一個字,生成8首詩 for word in list(u'春江花月夜涼如水'): gen_poetry = ''.join(generate(model,word,ix2word,word2ix)) gen_poetries.append(gen_poetry) vis.text('</br>'.join([''.join(poetry) for poetry in gen_poetries]), win = u'gen_poem') t.save(model.state_dict(), '%s_%s.pth' %(opt.model_prefix,epoch)) def gen(**kwargs): ''' 提供命令行接口,用以生成相應的詩 ''' for k,v in kwargs.items(): setattr(opt,k,v) data, word2ix, ix2word = get_data(opt) model = PoetryModel(len(word2ix), 128, 256) map_location = lambda s,l:s # 上邊句子里的map_location是在load里用的,用以加載到指定的CPU或GPU, # 上邊句子的意思是將模型加載到默認的GPU上 state_dict = t.load(opt.model_path, map_location = map_location) model.load_state_dict(state_dict) if opt.use_gpu: model.cuda() if sys.version_info.major == 3: if opt.start_words.insprintable(): start_words = opt.start_words prefix_words = opt.prefix_words if opt.prefix_words else None else: start_words = opt.start_words.encode('ascii',\ 'surrogateescape').decode('utf8') prefix_words = opt.prefix_words.encode('ascii',\ 'surrogateescape').decode('utf8') if opt.prefix_words else None start_words = start_words.replace(',',u',')\ .replace('.',u'。')\ .replace('?',u'?') gen_poetry = gen_acrostic if opt.acrostic else generate result = gen_poetry(model,start_words,ix2word,word2ix,prefix_words) print(''.join(result)) if __name__ == '__main__': import fire fire.Fire()
以上代碼給我一些經驗,
1. 了解python的編程方式,如空格、換行等;進一步了解python的各個基本模塊;
2. 可能出的錯誤:函數名寫錯,大小寫,變量名寫錯,括號不全。
3. 對cuda()的用法有了進一步認識;
4. 學會了調試程序(fire);
5. 學會了訓練結果的可視化(visdom);
6. 進一步的了解了LSTM,對深度學習的架構、實現有了宏觀把控。
這篇pytorch下使用LSTM神經網絡寫詩實例就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持億速云。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。