您好,登錄后才能下訂單哦!
如下所示:
import io import torch import torch.onnx from models.C3AEModel import PlainC3AENetCBAM device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def test(): model = PlainC3AENetCBAM() pthfile = r'/home/joy/Projects/models/emotion/PlainC3AENet.pth' loaded_model = torch.load(pthfile, map_location='cpu') # try: # loaded_model.eval() # except AttributeError as error: # print(error) model.load_state_dict(loaded_model['state_dict']) # model = model.to(device) #data type nchw dummy_input1 = torch.randn(1, 3, 64, 64) # dummy_input2 = torch.randn(1, 3, 64, 64) # dummy_input3 = torch.randn(1, 3, 64, 64) input_names = [ "actual_input_1"] output_names = [ "output1" ] # torch.onnx.export(model, (dummy_input1, dummy_input2, dummy_input3), "C3AE.onnx", verbose=True, input_names=input_names, output_names=output_names) torch.onnx.export(model, dummy_input1, "C3AE_emotion.onnx", verbose=True, input_names=input_names, output_names=output_names) if __name__ == "__main__": test()
直接將PlainC3AENetCBAM替換成需要轉換的模型,然后修改pthfile,輸入和onnx模型名字然后執行即可。
注意:上面代碼中注釋的dummy_input2,dummy_input3,torch.onnx.export對應的是多個輸入的例子。
在轉換過程中遇到的問題匯總
RuntimeError: Failed to export an ONNX attribute, since it's not constant, please try to make things (e.g., kernel size) static if possible
在轉換過程中遇到RuntimeError: Failed to export an ONNX attribute, since it's not constant, please try to make things (e.g., kernel size) static if possible的錯誤。
根據報的錯誤日志信息打開/home/joy/.tensorflow/venv/lib/python3.6/site-packages/torch/onnx/symbolic_helper.py,在相應位置添加print之后,可以定位到具體哪個op出問題。
例如:
在相應位置添加
print(v.node())
輸出信息如下:
%124 : Long() = onnx::Gather[axis=0](%122, %121), scope: PlainC3AENetCBAM/Bottleneck[cbam]/CBAM[cbam]/ChannelGate[ChannelGate] # /home/joy/Projects/models/emotion/WhatsTheemotion/models/cbam.py:46:0
原因是pytorch中的tensor.size(1)方式onnx識別不了,需要修改成常量。
以上這篇Pytorch模型轉onnx模型實例就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持億速云。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。