您好,登錄后才能下訂單哦!
這篇文章將為大家詳細講解有關如何將tensorflow模型打包成PB文件,小編覺得挺實用的,因此分享給大家做個參考,希望大家閱讀完這篇文章后可以有所收獲。
1. tensorflow模型文件打包成PB文件
import tensorflow as tf from tensorflow.python.tools import freeze_graph with tf.Graph().as_default(): with tf.device("/cpu:0"): config = tf.ConfigProto(allow_soft_placement=True) with tf.Session(config=config).as_default() as sess: model = Your_Model_Name() model.build_graph() sess.run(tf.initialize_all_variables()) saver = tf.train.Saver() ckpt_path = "/your/model/path" saver.restore(sess, ckpt_path) graphdef = tf.get_default_graph().as_graph_def() tf.train.write_graph(sess.graph_def,"/your/save/path/","save_name.pb",as_text=False) frozen_graph = tf.graph_util.convert_variables_to_constants(sess,graphdef,['output/node/name']) frozen_graph_trim = tf.graph_util.remove_training_nodes(frozen_graph) freeze_graph.freeze_graph('/your/save/path/save_name.pb','',True, ckpt_path,'output/node/name','save/restore_all','save/Const:0','frozen_name.pb',True,"")
2. PB文件讀取使用
output_graph_def = tf.GraphDef() with open("your_name.pb","rb") as f: output_graph_def.ParseFromString(f.read()) _ = tf.import_graph_def(output_graph_def, name="") node_in = sess.graph.get_tensor_by_name("input_node_name") model_out = sess.graph.get_tensor_by_name("out_node_name") feed_dict = {node_in:in_data} pred = sess.run(model_out, feed_dict)
關于“如何將tensorflow模型打包成PB文件”這篇文章就分享到這里了,希望以上內容可以對大家有一定的幫助,使各位可以學到更多知識,如果覺得文章不錯,請把它分享出去讓更多的人看到。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。