您好,登錄后才能下訂單哦!
不懂Keras模型轉成tensorflow中.pb的方法?其實想解決這個問題也不難,下面讓小編帶著大家一起學習怎么去解決,希望大家閱讀完這篇文章后大所收獲。
Keras的.h6模型轉成tensorflow的.pb格式模型,方便后期的前端部署。直接上代碼
from keras.models import Model from keras.layers import Dense, Dropout from keras.applications.mobilenet import MobileNet from keras.applications.mobilenet import preprocess_input from keras.preprocessing.image import load_img, img_to_array import tensorflow as tf from keras import backend as K import os base_model = MobileNet((None, None, 3), alpha=1, include_top=False, pooling='avg', weights=None) x = Dropout(0.75)(base_model.output) x = Dense(10, activation='softmax')(x) model = Model(base_model.input, x) model.load_weights('mobilenet_weights.h6') def freeze_session(session, keep_var_names=None, output_names=None, clear_devices=True): from tensorflow.python.framework.graph_util import convert_variables_to_constants graph = session.graph with graph.as_default(): freeze_var_names = list(set(v.op.name for v in tf.global_variables()).difference(keep_var_names or [])) output_names = output_names or [] output_names += [v.op.name for v in tf.global_variables()] input_graph_def = graph.as_graph_def() if clear_devices: for node in input_graph_def.node: node.device = "" frozen_graph = convert_variables_to_constants(session, input_graph_def, output_names, freeze_var_names) return frozen_graph output_graph_name = 'NIMA.pb' output_fld = '' #K.set_learning_phase(0) print('input is :', model.input.name) print ('output is:', model.output.name) sess = K.get_session() frozen_graph = freeze_session(K.get_session(), output_names=[model.output.op.name]) from tensorflow.python.framework import graph_io graph_io.write_graph(frozen_graph, output_fld, output_graph_name, as_text=False) print('saved the constant graph (ready for inference) at: ', os.path.join(output_fld, output_graph_name))
補充知識:keras h6 model 轉換為tflite
在移動端的模型,若選擇tensorflow或者keras最基本的就是生成tflite文件,以本文記錄一次轉換過程。
環境
tensorflow 1.12.0
python 3.6.5
h6 model saved by `model.save('tf.h6')`
直接轉換
`tflite_convert --output_file=tf.tflite --keras_model_file=tf.h6` output `TypeError: __init__() missing 2 required positional arguments: 'filters' and 'kernel_size'`
先轉成pb再轉tflite
``` git clone git@github.com:amir-abdi/keras_to_tensorflow.git cd keras_to_tensorflow python keras_to_tensorflow.py --input_model=path/to/tf.h6 --output_model=path/to/tf.pb tflite_convert \ --output_file=tf.tflite \ --graph_def_file=tf.pb \ --input_arrays=convolution2d_1_input \ --output_arrays=dense_3/BiasAdd \ --input_shape=1,3,448,448 ```
參數說明,input_arrays和output_arrays是model的起始輸入變量名和結束變量名,input_shape是和input_arrays對應
官網是說需要用到tenorboard來查看,一個比較trick的方法
先執行上面的命令,會報convolution2d_1_input找不到,在堆棧里面有convert_saved_model.py文件,get_tensors_from_tensor_names()這個方法,添加`print(list(tensor_name_to_tensor))` 到 tensor_name_to_tensor 這個變量下面,再執行一遍,會打印出所有tensor的名字,再根據自己的模型很容易就能判斷出實際的name。
感謝你能夠認真閱讀完這篇文章,希望小編分享Keras模型轉成tensorflow中.pb的方法內容對大家有幫助,同時也希望大家多多支持億速云,關注億速云行業資訊頻道,遇到問題就找億速云,詳細的解決方法等著你來學習!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。