您好,登錄后才能下訂單哦!
在利用tensorflow進行文本挖掘工作的時候,經常涉及到維度擴展和壓縮工作。比如對文本進行embedding操作完成之后,若要進行卷積操作,就需要對embedded的向量擴展維度,將[batch_size, embedding_dims]擴展成為[batch_size, embedding_dims, 1],利用tf.expand_dims(input, -1)就可實現,反過來用squeeze(input, -1)或者tf.squeeze(input)也可以把最第三維去掉。
tf.expand_dims()
tf.squeeze()
tf.expand_dims()
tf.expand_dims(input, axis=None, name=None, dim=None)
在第axis位置增加一個維度.
給定張量輸入,此操作在輸入形狀的維度索引軸處插入1的尺寸。 尺寸索引軸從零開始; 如果您指定軸的負數,則從最后向后計數。
如果要將批量維度添加到單個元素,則此操作非常有用。 例如,如果您有一個單一的形狀[height,width,channels],您可以使用expand_dims(image,0)使其成為1個圖像,這將使形狀[1,高度,寬度,通道]。
例子
# 't' is a tensor of shape [2] shape(expand_dims(t, 0)) ==> [1, 2] shape(expand_dims(t, 1)) ==> [2, 1] shape(expand_dims(t, -1)) ==> [2, 1] # 't2' is a tensor of shape [2, 3, 5] shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5] shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5] shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1]
tf.squeeze()
tf.squeeze(input, axis=None, name=None, squeeze_dims=None)
直接上例子
# 't' is a tensor of shape [1, 2, 1, 3, 1, 1] shape(squeeze(t)) ==> [2, 3] # 't' is a tensor of shape [1, 2, 1, 3, 1, 1] shape(squeeze(t, [2, 4])) ==> [1, 2, 3, 1]
以上這篇tensorflow 利用expand_dims和squeeze擴展和壓縮tensor維度方式就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持億速云。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。