您好,登錄后才能下訂單哦!
超級好用的移動窗口函數
最近經常使用移動窗口函數,覺得很方便,功能強大,代碼簡單,故將pandas中的移動窗口函數都做介紹。它都是以rolling打頭的函數,后接具體的函數,來顯示該移動窗口函數的功能。
rolling_count 計算各個窗口中非NA觀測值的數量
函數
pandas.rolling_count(arg, window, freq=None, center=False, how=None)
arg : DataFrame 或 numpy的ndarray 數組格式
window : 指移動窗口的大小,為整數
freq :
center : 布爾型,默認為False, 指取中間的
how : 字符串,默認為“mean”,為down- 或re-sampling
import pandas as pd import numpy as np df = pd.DataFrame({'key1':['a','a','b','b','a'], 'key2':['one','two','one','two','one'], 'data1':np.nan, 'data2':np.random.randn(5)}) df
pd.rolling_count(df[['data1','data2']],window = 3)
rolling_sum 移動窗口的和
pandas.rolling_sum(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs)
arg : 為Series或DataFrame
window : 窗口的大小
min_periods : 最小的觀察數值個數
freq :
center : 布爾型,默認為False, 指取中間的
how : 取值的方式,默認為None
pd.rolling_sum(df,window = 2,min_periods = 1)
rolling_mean 移動窗口的均值
pandas.rolling_mean(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs)
rolling_median 移動窗口的中位數
pandas.rolling_median(arg, window, min_periods=None, freq=None, center=False, how='median', **kwargs)
rolling_var 移動窗口的方差
pandas.rolling_var(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs)
rolling_std 移動窗口的標準差
pandas.rolling_std(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs)
rolling_min 移動窗口的最小值
pandas.rolling_min(arg, window, min_periods=None, freq=None, center=False, how='min', **kwargs)
rolling_max 移動窗口的最大值
pandas.rolling_min(arg, window, min_periods=None, freq=None, center=False, how='min', **kwargs)
rolling_corr 移動窗口的相關系數
pandas.rolling_corr(arg1, arg2=None, window=None, min_periods=None, freq=None, center=False, pairwise=None, how=None)
rolling_corr_pairwise 配對數據的相關系數
等價于: rolling_corr(…, pairwise=True)
pandas.rolling_corr_pairwise(df1, df2=None, window=None, min_periods=None, freq=None, center=False)
rolling_cov 移動窗口的協方差
pandas.rolling_cov(arg1, arg2=None, window=None, min_periods=None, freq=None, center=False, pairwise=None, how=None, ddof=1)
rolling_skew 移動窗口的偏度(三階矩)
pandas.rolling_skew(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs)
rolling_kurt 移動窗口的峰度(四階矩)
pandas.rolling_kurt(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs)
rolling_apply 對移動窗口應用普通數組函數
pandas.rolling_apply(arg, window, func, min_periods=None, freq=None, center=False, args=(), kwargs={})
rolling_quantile 移動窗口分位數函數
pandas.rolling_quantile(arg, window, quantile, min_periods=None, freq=None, center=False)
rolling_window 移動窗口
pandas.rolling_window(arg, window=None, win_type=None, min_periods=None, freq=None, center=False, mean=True, axis=0, how=None, **kwargs)
ewma 指數加權移動
ewma(arg[, com, span, halflife, ...])
ewmstd 指數加權移動標準差
ewmstd(arg[, com, span, halflife, ...])
ewmvar 指數加權移動方差
ewmvar(arg[, com, span, halflife, ...])
ewmcorr 指數加權移動相關系數
ewmcorr(arg1[, arg2, com, span, halflife, ...])
ewmcov 指數加權移動協方差
ewmcov(arg1[, arg2, com, span, halflife, ...])
以上這篇python pandas移動窗口函數rolling的用法就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持億速云。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。