91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Java代碼的優化方法

發布時間:2020-05-28 10:26:54 來源:億速云 閱讀:254 作者:Leah 欄目:編程語言

如何優化java代碼?相信很多新手小白對代碼優化的了解處于懵懂狀態,小編給你幾點建議,通過幾點建議,希望你能收獲更多。如下資料是關于Java代碼優化方法的內容。

1 .只做有目的性的優化

大型軟件系統肯定非常關注性能問題。雖然我們希望能夠寫出最高效的代碼,但很多時候,如果想對代碼進行優化,我們卻無從下手。例如,下面的這段代碼會影響到性能嗎?
public void processIntegers(List<Integer> integers) {

for (Integer value: integers) {
    for (int i = integers.size() - 1; i >= 0; i--) {
        value += integers.get(i);
    }
}

}
這就得視情況而定了。上面這段代碼可以看出它的處理算法是O(n3)(使用 大O符號 ),其中n是list集合的大小。如果n只有5,那么就不會有問題,只會執行25次迭代。但如果n是10萬,那可能會影響性能了。請注意,即使這樣我們也不能判定肯定會有問題。盡管此方法需要執行10億次邏輯迭代,但會不會對性能產生影響仍然有待討論。

例如,假設客戶端是在它自己的線程中執行這段代碼,并且異步等待計算完成,那么它的執行時間有可能是可以接受的。同樣,如果系統部署在了生產環境上,但是沒有客戶端進行調用,那我們根本沒必要去對這段代碼進行優化,因為壓根就不會消耗系統的整體性能。事實上,優化性能以后系統會變得更加復雜,悲劇的是系統的性能卻沒有因此而提高。

最重要的是天下沒有免費的午餐,因此為了降低代價,我們通常會通過類似于緩存、循環展開或預計算值這類技術去實現優化,這樣反而增加了系統的復雜性,也降低了代碼的可讀性。如果這種優化可以提高系統的性能,那么即使變得復雜,那也是值得的,但是做決定之前,必須首先知道這兩條信息:

性能要求是什么
性能瓶頸在哪里
首先我們需要清楚地知道性能要求是什么。如果最終是在要求以內,并且最終用戶也沒有提出什么異議,那么就沒有必要進行性能優化。但是,當添加了新功能或者系統的數據量達到一定規模以后就必須進行優化了,否則可能會出現問題。

在這種情況下,不應該靠直覺,也不應該依靠檢查。因為即使是像Martin Fowler這樣有經驗的開發人員也容易做一些錯誤的優化,正如在 重構 (第70頁)一文中解釋的那樣:

引用

如果分析了足夠多的程序以后,你會發現關于性能的有趣之處在于,大部分時間都浪費在了系統中的一小部分代碼中里面。如果對所有代碼進行了同樣的優化,那么最終結果就是浪費了90%的優化,因為優化過以后的代碼運行得頻率并不多。因為沒有目標而做的優化所耗費的時間,都是在浪費時間。

作為一名身經百戰的開發人員,我們應該認真對待這一觀點。第一次猜測不僅沒有提高系統的性能,而且90%的開發時間完全是浪費了。相反,我們應該在生產環境(或者預生產環境中)執行常見用例,并找出在執行過程中是哪部分在消耗系統資源,然后對系統進行 配置 。例如消耗大部分資源的代碼只占了10%,那么優化其余90%的代碼就是浪費時間。

根據分析結果,要想使用這些知識,我們應該從最常見的情況入手。因為這將確保實際付出的努力最終是可以提高系統的性能。每次優化后,都應該重復分析步驟。因為這不僅可以確保系統的性能真的得到了改善,也可以看出再對系統進行優化后,性能瓶頸是在哪個部分(因為解決完一個瓶頸以后,其它瓶頸可能消耗系統更多的整體資源)。需要注意的是,在現有瓶頸中花費的時間百分比很可能會增加,因為剩下的瓶頸是暫時不變的,而且隨著目標瓶頸的消除,整個執行時間應該會減少。

盡管在Java系統中想要對概要文件進行全面檢查需要很大的容量,但是還是有一些很常見的工具可以幫助發現系統的性能熱點,這些工具包括 JMeter 、 AppDynamics 和 YourKit 。另外,還可以參見DZone的 性能監測指南 ,獲取更多關于Java程序性能優化的信息。

雖然性能是許多大型軟件系統一個非常重要的組成部分,也成為產品交付管道中自動化測試套件的一部分,但是還是不能夠盲目的且沒有目的的進行優化。相反,應該對已經掌握的性能瓶頸進行特定的優化。這不僅可以幫助我們避免增加了系統的復雜性,而且還讓我們少走彎路,不去做那些浪費時間的優化。

2.常量盡量使用枚舉

需要用戶列出一組預定義或常量值的場景有很多,例如在web應用程序中可能遇到的HTTP響應代碼。最常見的實現技術之一是新建類,該類里面有很多靜態的final類型的值,每個值都應該有一句注釋,描述該值的含義是什么:

public class HttpResponseCodes {
public static final int OK = 200;
public static final int NOT_FOUND = 404;
public static final int FORBIDDEN = 403;
}
if (getHttpResponse().getStatusCode() == HttpResponseCodes.OK) {
// Do something if the response code is OK
}
能夠有這種思路就已經非常好了,但這還是有一些缺點:

沒有對傳入的整數值進行嚴格的校驗
由于是基本數據類型,因此不能調用狀態代碼上的方法
在第一種情況下只是簡單的創建了一個特定的常量來表示特殊的整數值,但并沒有對方法或變量進行限制,因此使用的值可能會超出定義的范圍。例如:

public class HttpResponseHandler {
public static void printMessage(int statusCode) {
System.out.println("Recieved status of " + statusCode);
}
}
HttpResponseHandler.printMessage(15000);
盡管15000并不是有效的HTTP響應代碼,但是由于服務器端也沒有限制客戶端必須提供有效的整數。在第二種情況下,我們沒有辦法為狀態代碼定義方法。例如,如果想要檢查給定的狀態代碼是否是一個成功的代碼,那就必須定義一個單獨的函數:

public class HttpResponseCodes {
public static final int OK = 200;
public static final int NOT_FOUND = 404;
public static final int FORBIDDEN = 403;
public static boolean isSuccess(int statusCode) {
return statusCode >= 200 && statusCode < 300;
}
}
if (HttpResponseCodes.isSuccess(getHttpResponse().getStatusCode())) {
// Do something if the response code is a success code
}
為了解決這些問題,我們需要將常量類型從基本數據類型改為自定義類型,并只允許自定義類的特定對象。這正是 Java枚舉(enum) 的用途。使用enum,我們可以一次性解決這兩個問題:

public enum HttpResponseCodes {
OK(200),
FORBIDDEN(403),
NOT_FOUND(404);
private final int code;
HttpResponseCodes(int code) {
this.code = code;
}
public int getCode() {
return code;
}
public boolean isSuccess() {
return code >= 200 && code < 300;
}
}
if (getHttpResponse().getStatusCode().isSuccess()) {
// Do something if the response code is a success code
}
同樣,現在還可以要求在調用方法的時候提供必須有效的狀態代碼:

public class HttpResponseHandler {
public static void printMessage(HttpResponseCode statusCode) {
System.out.println("Recieved status of " + statusCode.getCode());
}
}
HttpResponseHandler.printMessage(HttpResponseCode.OK);
值得注意的是,舉這個例子事項說明如果是常量,則應該盡量使用枚舉,但并不是說什么情況下都應該使用枚舉。在某些情況下,可能希望使用一個常量來表示某個特殊值,但是也允許提供其它的值。例如,大家可能都知道圓周率,我們可以用一個常量來捕獲這個值(并重用它):

public class NumericConstants {
public static final double PI = 3.14;
public static final double UNIT_CIRCLE_AREA = PI PI;
}
public class Rug {
private final double area;
public class Run(double area) {
this.area = area;
}
public double getCost() {
return area
2;
}
}
// Create a carpet that is 4 feet in diameter (radius of 2 feet)
Rug fourFootRug = new Rug(2 * NumericConstants.UNIT_CIRCLE_AREA);
因此,使用枚舉的規則可以歸納為:

當所有可能的離散值都已經提前知道了,那么就可以使用枚舉

再拿上文中所提到的HTTP響應代碼為例,我們可能知道HTTP狀態代碼的所有值(可以在RFC 7231中找的到,它定義了HTTP 1.1協議)。因此使用了枚舉。在計算圓周率的情況下,我們不知道關于圓周率的所有可能值(任何可能的double都是有效的),但同時又希望為圓形的rugs創建一個常量,使計算更容易(更容易閱讀);因此定義了一系列常量。

如果不能提前知道所有可能的值,但是又希望包含每個值的字段或方法,那么最簡單的方法就是可以新建一個類來表示數據。盡管沒有說過什么場景應該絕對不用枚舉,但要想知道在什么地方、什么時間不使用枚舉的關鍵是提前意識到所有的值,并且禁止使用其他任何值。

3.重新定義類里面的equals()方法

對象識別可能是一個很難解決的問題:如果兩個對象在內存中占據相同的位置,那么它們是相同的嗎?如果它們的id相同,它們是相同的嗎?或者如果所有的字段都相等呢?雖然每個類都有自己的標識邏輯,但是在系統中有很多西方都需要去判斷是否相等。例如,有如下的一個類,表示訂單購買…

public class Purchase {
private long id;
public long getId() {
return id;
}
public void setId(long id) {
this.id = id;
}
}
……就像下面寫的這樣,代碼中肯定有很多地方都是類似于的:

Purchase originalPurchase = new Purchase();
Purchase updatedPurchase = new Purchase();
if (originalPurchase.getId() == updatedPurchase.getId()) {
// Execute some logic for equal purchases
}
這些邏輯調用的越多(反過來,違背了 DRY原則 ),Purchase類的身份信息也會變得越來越多。如果出于某種原因,更改了Purchase類的身份邏輯(例如,更改了標識符的類型),則需要更新標識邏輯所在的位置肯定也非常多。

我們應該在類的內部初始化這個邏輯,而不是通過系統將Purchase類的身份邏輯進行過多的傳播。乍一看,我們可以創建一個新的方法,比如isSame,這個方法的入參是一個Purchase對象,并對每個對象的id進行比較,看看它們是否相同:

public class Purchase {
private long id;
public boolean isSame(Purchase other) {
return getId() == other.gerId();  
}
}
雖然這是一個有效的解決方案,但是忽略了Java的內置功能:使用equals方法。Java中的每個類都是繼承了Object類,雖然是隱式的,因此同樣也就繼承了equals方法。默認情況下,此方法將檢查對象標識(內存中相同的對象),如JDK中的對象類定義(version 1.8.0_131)中的以下代碼片段所示:

public boolean equals(Object obj) {
return (this == obj);
}
這個equals方法充當了注入身份邏輯的自然位置(通過覆蓋默認的equals實現):

public class Purchase {
private long id;
public long getId() {
return id;
}
public void setId(long id) {
this.id = id;}
@Override
br/>@Override<br/public double getIntestRate() {
return 0.03;}
@Override
br/>@Override<br/public double getIntestRate() {
return 0.04;}
@Override
br/>@Override<br/public double getIntestRate() {
return 0.05;}
@Override<br/" rel="nofollow">br/>}
@Override<br/public boolean supportsDeposits() {
return false;
}
}
這不僅將每個帳戶特有的信息封裝到了到自己的類中,而且還支持用戶可以在兩種重要的方式中對設計進行變化。首先,如果想要添加一個新的銀行帳戶類型,只需創建一個新的具體類,實現了BankAccount的接口,給出兩個方法的具體實現就可以了。在條件結構設計中,我們必須在枚舉中添加一個新值,在兩個方法中添加新的case語句,并在每個case語句下插入新帳戶的邏輯。

其次,如果我們希望在BankAccount接口中添加一個新方法,我們只需在每個具體類中添加新方法。在條件設計中,我們必須復制現有的switch語句并將其添加到我們的新方法中。此外,我們還必須在每個case語句中添加每個帳戶類型的邏輯。

在數學上,當我們創建一個新方法或添加一個新類型時,我們必須在多態和條件設計中做出相同數量的邏輯更改。例如,如果我們在多態設計中添加一個新方法,我們必須將新方法添加到所有n個銀行帳戶的具體類中,而在條件設計中,我們必須在我們的新方法中添加n個新的case語句。如果我們在多態設計中添加一個新的account類型,我們必須在BankAccount接口中實現所有的m數,而在條件設計中,我們必須向每個m現有方法添加一個新的case語句。

雖然我們必須做的改變的數量是相等的,但變化的性質卻是完全不同的。在多態設計中,如果我們添加一個新的帳戶類型并且忘記包含一個方法,編譯器會拋出一個錯誤,因為我們沒有在我們的BankAccount接口中實現所有的方法。在條件設計中,沒有這樣的檢查,以確保每個類型都有一個case語句。如果添加了新類型,我們可以簡單地忘記更新每個switch語句。這個問題越嚴重,我們就越重復我們的switch語句。我們是人類,我們傾向于犯錯誤。因此,任何時候,只要我們可以依賴編譯器來提醒我們錯誤,我們就應該這么做。

關于這兩種設計的第二個重要注意事項是它們在外部是等同的。例如,如果我們想要檢查一個支票帳戶的利率,條件設計就會類似如下:

BankAccount checkingAccount = new BankAccount(BankAccountType.CHECKING);
System.out.println(checkingAccount.getInterestRate()); // Output: 0.03
相反,多態設計將類似如下:

BankAccount checkingAccount = new CheckingAccount();
System.out.println(checkingAccount.getInterestRate()); // Output: 0.03
從外部的角度來看,我們只是在BankAccount對象上調用getintereUNK()。如果我們將創建過程抽象為一個工廠類的話,這將更加明顯:

public class ConditionalAccountFactory {
public static BankAccount createCheckingAccount() {
return new BankAccount(BankAccountType.CHECKING);
}
}
public class PolymorphicAccountFactory {
public static BankAccount createCheckingAccount() {
return new CheckingAccount();
}
}
// In both cases, we create the accounts using a factory
BankAccount conditionalCheckingAccount = ConditionalAccountFactory.createCheckingAccount();
BankAccount polymorphicCheckingAccount = PolymorphicAccountFactory.createCheckingAccount();
// In both cases, the call to obtain the interest rate is the same
System.out.println(conditionalCheckingAccount.getInterestRate()); // Output: 0.03
System.out.println(polymorphicCheckingAccount.getInterestRate()); // Output: 0.03
將條件邏輯替換成多態類是非常常見的,因此已經發布了將條件語句重構為多態類的方法。這里就有一個簡單的例子。此外, 馬丁·福勒(Martin Fowler)的《重構》 (p . 255)也描述了執行這個重構的詳細過程。

以上就是Java代碼優化方法的詳細內容了,看完之后是否有所收獲呢?如果想了解更多相關內容,歡迎關注億速云行業資訊!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

津市市| 红安县| 固安县| 铜陵市| 岗巴县| 武山县| 汤原县| 双鸭山市| 济阳县| 庆元县| 铁岭市| 阳原县| 拉孜县| 二连浩特市| 志丹县| 五指山市| 兴业县| 黔西| 明光市| 商丘市| 栾城县| 崇州市| 图木舒克市| 贵州省| 昂仁县| 关岭| 巍山| 慈溪市| 合肥市| 安阳市| 封开县| 万宁市| 米易县| 宜城市| 兴山县| 永安市| 阿鲁科尔沁旗| 郑州市| 通化市| 英超| 新乡县|