您好,登錄后才能下訂單哦!
Lasagne是一個建立在Theano庫之上的輕量級深度學習庫,可以用來構建神經網絡模型。下面是一個使用Lasagne框架構建卷積神經網絡的簡單示例:
import lasagne
import theano
import theano.tensor as T
input_var = T.tensor4('inputs')
target_var = T.ivector('targets')
# 定義網絡結構
network = lasagne.layers.InputLayer(shape=(None, 1, 28, 28), input_var=input_var)
network = lasagne.layers.Conv2DLayer(network, num_filters=32, filter_size=(5, 5), nonlinearity=lasagne.nonlinearities.rectify)
network = lasagne.layers.MaxPool2DLayer(network, pool_size=(2, 2))
network = lasagne.layers.Conv2DLayer(network, num_filters=64, filter_size=(3, 3), nonlinearity=lasagne.nonlinearities.rectify)
network = lasagne.layers.MaxPool2DLayer(network, pool_size=(2, 2))
network = lasagne.layers.DenseLayer(network, num_units=256, nonlinearity=lasagne.nonlinearities.rectify)
network = lasagne.layers.DenseLayer(network, num_units=10, nonlinearity=lasagne.nonlinearities.softmax)
# 定義損失函數
prediction = lasagne.layers.get_output(network)
loss = lasagne.objectives.categorical_crossentropy(prediction, target_var)
loss = loss.mean()
# 定義更新規則
params = lasagne.layers.get_all_params(network, trainable=True)
updates = lasagne.updates.adam(loss, params)
# 編譯訓練函數
train_fn = theano.function([input_var, target_var], loss, updates=updates)
# 訓練模型
for epoch in range(num_epochs):
for batch in iterate_minibatches(train_data, train_labels, batch_size, shuffle=True):
inputs, targets = batch
train_fn(inputs, targets)
# 預測
test_prediction = lasagne.layers.get_output(network, deterministic=True)
test_fn = theano.function([input_var], T.argmax(test_prediction, axis=1))
predictions = test_fn(test_data)
通過以上步驟,您可以使用Lasagne框架構建卷積神經網絡,并進行訓練和預測。您可以根據自己的需求進行調整和優化模型。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。