您好,登錄后才能下訂單哦!
這篇“在瀏覽器中怎么實現訓練模型”文章的知識點大部分人都不太理解,所以小編給大家總結了以下內容,內容詳細,步驟清晰,具有一定的借鑒價值,希望大家閱讀完這篇文章能有所收獲,下面我們一起來看看這篇“在瀏覽器中怎么實現訓練模型”文章吧。
本文將在瀏覽器中定義、訓練和運行模型。 為了實現這一功能,我將構建一個識別鳶尾花的案例。
接下來,我們將創建一個神經網絡。同時,根據開源數據集我們將鳶尾花分為三類:Setosa、Virginica 和 Versicolor。
每個機器學習項目的核心都是數據集。 我們需要采取的第一步是將這個數據集拆分為訓練集和測試集。
這樣做的原因是我們將使用我們的訓練集來訓練我們的算法和我們的測試集來檢查我們的預測的準確性,以驗證我們的模型是否可以使用或需要調整。
為了方便起見,我已經將訓練集和測試集拆分為兩個 JSON 文件:
[{"sepal_length":6,"sepal_width":2.9,"petal_length":4.5,"petal_width":1.5,"species":"versicolor"}, {"sepal_length":5.2,"sepal_width":3.4,"petal_length":1.4,"petal_width":0.2,"species":"setosa"}, {"sepal_length":6.5,"sepal_width":3,"petal_length":5.8,"petal_width":2.2,"species":"virginica"}, {"sepal_length":5.9,"sepal_width":3.2,"petal_length":4.8,"petal_width":1.8,"species":"versicolor"}, {"sepal_length":5.1,"sepal_width":3.8,"petal_length":1.9,"petal_width":0.4,"species":"setosa"}, {"sepal_length":5.4,"sepal_width":3,"petal_length":4.5,"petal_width":1.5,"species":"versicolor"}, {"sepal_length":7,"sepal_width":3.2,"petal_length":4.7,"petal_width":1.4,"species":"versicolor"}, {"sepal_length":5.7,"sepal_width":2.8,"petal_length":4.5,"petal_width":1.3,"species":"versicolor"}, {"sepal_length":5.1,"sepal_width":2.5,"petal_length":3,"petal_width":1.1,"species":"versicolor"}, {"sepal_length":4.9,"sepal_width":2.4,"petal_length":3.3,"petal_width":1,"species":"versicolor"}, {"sepal_length":5.1,"sepal_width":3.7,"petal_length":1.5,"petal_width":0.4,"species":"setosa"}, {"sepal_length":5.7,"sepal_width":2.8,"petal_length":4.1,"petal_width":1.3,"species":"versicolor"}, {"sepal_length":5.6,"sepal_width":3,"petal_length":4.5,"petal_width":1.5,"species":"versicolor"}, {"sepal_length":6.1,"sepal_width":3,"petal_length":4.6,"petal_width":1.4,"species":"versicolor"}]
[{"sepal_length":5.1,"sepal_width":3.5,"petal_length":1.4,"petal_width":0.2,"species":"setosa"}, {"sepal_length":4.9,"sepal_width":3,"petal_length":1.4,"petal_width":0.2,"species":"setosa"}, {"sepal_length":4.7,"sepal_width":3.2,"petal_length":1.3,"petal_width":0.2,"species":"setosa"}, {"sepal_length":4.6,"sepal_width":3.1,"petal_length":1.5,"petal_width":0.2,"species":"setosa"}, {"sepal_length":5,"sepal_width":3.6,"petal_length":1.4,"petal_width":0.2,"species":"setosa"}, {"sepal_length":4.6,"sepal_width":3.4,"petal_length":1.4,"petal_width":0.3,"species":"setosa"}, {"sepal_length":5,"sepal_width":3.4,"petal_length":1.5,"petal_width":0.2,"species":"setosa"}, {"sepal_length":4.4,"sepal_width":2.9,"petal_length":1.4,"petal_width":0.2,"species":"setosa"}, {"sepal_length":4.9,"sepal_width":3.1,"petal_length":1.5,"petal_width":0.1,"species":"setosa"}, {"sepal_length":5.4,"sepal_width":3.7,"petal_length":1.5,"petal_width":0.2,"species":"setosa"}, {"sepal_length":4.8,"sepal_width":3.4,"petal_length":1.6,"petal_width":0.2,"species":"setosa"}, {"sepal_length":4.8,"sepal_width":3,"petal_length":1.4,"petal_width":0.1,"species":"setosa"}, {"sepal_length":4.3,"sepal_width":3,"petal_length":1.1,"petal_width":0.1,"species":"setosa"}, {"sepal_length":5.8,"sepal_width":4,"petal_length":1.2,"petal_width":0.2,"species":"setosa"}, {"sepal_length":5.7,"sepal_width":4.4,"petal_length":1.5,"petal_width":0.4,"species":"setosa"}, {"sepal_length":5.4,"sepal_width":3.9,"petal_length":1.3,"petal_width":0.4,"species":"setosa"}, {"sepal_length":5.1,"sepal_width":3.5,"petal_length":1.4,"petal_width":0.3,"species":"setosa"}, {"sepal_length":5.7,"sepal_width":3.8,"petal_length":1.7,"petal_width":0.3,"species":"setosa"}, {"sepal_length":5.1,"sepal_width":3.8,"petal_length":1.5,"petal_width":0.3,"species":"setosa"}, {"sepal_length":5.4,"sepal_width":3.4,"petal_length":1.7,"petal_width":0.2,"species":"setosa"}, {"sepal_length":4.6,"sepal_width":3.6,"petal_length":1,"petal_width":0.2,"species":"setosa"}, {"sepal_length":5.1,"sepal_width":3.3,"petal_length":1.7,"petal_width":0.5,"species":"setosa"}, {"sepal_length":4.8,"sepal_width":3.4,"petal_length":1.9,"petal_width":0.2,"species":"setosa"}, {"sepal_length":5,"sepal_width":3,"petal_length":1.6,"petal_width":0.2,"species":"setosa"}, {"sepal_length":5,"sepal_width":3.4,"petal_length":1.6,"petal_width":0.4,"species":"setosa"}, {"sepal_length":5.2,"sepal_width":3.5,"petal_length":1.5,"petal_width":0.2,"species":"setosa"}, {"sepal_length":4.7,"sepal_width":3.2,"petal_length":1.6,"petal_width":0.2,"species":"setosa"}, {"sepal_length":4.8,"sepal_width":3.1,"petal_length":1.6,"petal_width":0.2,"species":"setosa"}, {"sepal_length":5.4,"sepal_width":3.4,"petal_length":1.5,"petal_width":0.4,"species":"setosa"}, {"sepal_length":5.2,"sepal_width":4.1,"petal_length":1.5,"petal_width":0.1,"species":"setosa"}, {"sepal_length":5.5,"sepal_width":4.2,"petal_length":1.4,"petal_width":0.2,"species":"setosa"}, {"sepal_length":4.9,"sepal_width":3.1,"petal_length":1.5,"petal_width":0.1,"species":"setosa"}, {"sepal_length":5,"sepal_width":3.2,"petal_length":1.2,"petal_width":0.2,"species":"setosa"}, {"sepal_length":5.5,"sepal_width":3.5,"petal_length":1.3,"petal_width":0.2,"species":"setosa"}, {"sepal_length":4.9,"sepal_width":3.1,"petal_length":1.5,"petal_width":0.1,"species":"setosa"}, {"sepal_length":4.4,"sepal_width":3,"petal_length":1.3,"petal_width":0.2,"species":"setosa"}, {"sepal_length":5.1,"sepal_width":3.4,"petal_length":1.5,"petal_width":0.2,"species":"setosa"}, {"sepal_length":5,"sepal_width":3.5,"petal_length":1.3,"petal_width":0.3,"species":"setosa"}, {"sepal_length":4.5,"sepal_width":2.3,"petal_length":1.3,"petal_width":0.3,"species":"setosa"}, {"sepal_length":4.4,"sepal_width":3.2,"petal_length":1.3,"petal_width":0.2,"species":"setosa"}, {"sepal_length":5,"sepal_width":3.5,"petal_length":1.6,"petal_width":0.6,"species":"setosa"}, {"sepal_length":4.8,"sepal_width":3,"petal_length":1.4,"petal_width":0.3,"species":"setosa"}, {"sepal_length":5.1,"sepal_width":3.8,"petal_length":1.6,"petal_width":0.2,"species":"setosa"}, {"sepal_length":5.3,"sepal_width":3.7,"petal_length":1.5,"petal_width":0.2,"species":"setosa"}, {"sepal_length":5,"sepal_width":3.3,"petal_length":1.4,"petal_width":0.2,"species":"setosa"}, {"sepal_length":6.4,"sepal_width":3.2,"petal_length":4.5,"petal_width":1.5,"species":"versicolor"}, {"sepal_length":5.5,"sepal_width":2.3,"petal_length":4,"petal_width":1.3,"species":"versicolor"}, {"sepal_length":6.5,"sepal_width":2.8,"petal_length":4.6,"petal_width":1.5,"species":"versicolor"}, {"sepal_length":6.3,"sepal_width":3.3,"petal_length":4.7,"petal_width":1.6,"species":"versicolor"}, {"sepal_length":6.6,"sepal_width":2.9,"petal_length":4.6,"petal_width":1.3,"species":"versicolor"}, {"sepal_length":5.2,"sepal_width":2.7,"petal_length":3.9,"petal_width":1.4,"species":"versicolor"}, {"sepal_length":5,"sepal_width":2,"petal_length":3.5,"petal_width":1,"species":"versicolor"}, {"sepal_length":5.9,"sepal_width":3,"petal_length":4.2,"petal_width":1.5,"species":"versicolor"}, {"sepal_length":6,"sepal_width":2.2,"petal_length":4,"petal_width":1,"species":"versicolor"}, {"sepal_length":6.1,"sepal_width":2.9,"petal_length":4.7,"petal_width":1.4,"species":"versicolor"}, {"sepal_length":5.6,"sepal_width":2.9,"petal_length":3.6,"petal_width":1.3,"species":"versicolor"}, {"sepal_length":6.7,"sepal_width":3.1,"petal_length":4.4,"petal_width":1.4,"species":"versicolor"}, {"sepal_length":5.8,"sepal_width":2.7,"petal_length":4.1,"petal_width":1,"species":"versicolor"}, {"sepal_length":6.2,"sepal_width":2.2,"petal_length":4.5,"petal_width":1.5,"species":"versicolor"}, {"sepal_length":5.6,"sepal_width":2.5,"petal_length":3.9,"petal_width":1.1,"species":"versicolor"}, {"sepal_length":6.1,"sepal_width":2.8,"petal_length":4,"petal_width":1.3,"species":"versicolor"}, {"sepal_length":6.3,"sepal_width":2.5,"petal_length":4.9,"petal_width":1.5,"species":"versicolor"}, {"sepal_length":6.1,"sepal_width":2.8,"petal_length":4.7,"petal_width":1.2,"species":"versicolor"}, {"sepal_length":6.4,"sepal_width":2.9,"petal_length":4.3,"petal_width":1.3,"species":"versicolor"}, {"sepal_length":6.6,"sepal_width":3,"petal_length":4.4,"petal_width":1.4,"species":"versicolor"}, {"sepal_length":6.8,"sepal_width":2.8,"petal_length":4.8,"petal_width":1.4,"species":"versicolor"}, {"sepal_length":6.7,"sepal_width":3,"petal_length":5,"petal_width":1.7,"species":"versicolor"}, {"sepal_length":5.7,"sepal_width":2.6,"petal_length":3.5,"petal_width":1,"species":"versicolor"}, {"sepal_length":5.5,"sepal_width":2.4,"petal_length":3.8,"petal_width":1.1,"species":"versicolor"}, {"sepal_length":5.5,"sepal_width":2.4,"petal_length":3.7,"petal_width":1,"species":"versicolor"}, {"sepal_length":5.8,"sepal_width":2.7,"petal_length":3.9,"petal_width":1.2,"species":"versicolor"}, {"sepal_length":6,"sepal_width":2.7,"petal_length":5.1,"petal_width":1.6,"species":"versicolor"}, {"sepal_length":6,"sepal_width":3.4,"petal_length":4.5,"petal_width":1.6,"species":"versicolor"}, {"sepal_length":6.7,"sepal_width":3.1,"petal_length":4.7,"petal_width":1.5,"species":"versicolor"}, {"sepal_length":6.3,"sepal_width":2.3,"petal_length":4.4,"petal_width":1.3,"species":"versicolor"}, {"sepal_length":5.6,"sepal_width":3,"petal_length":4.1,"petal_width":1.3,"species":"versicolor"}, {"sepal_length":5.5,"sepal_width":2.5,"petal_length":4,"petal_width":1.3,"species":"versicolor"}, {"sepal_length":5.5,"sepal_width":2.6,"petal_length":4.4,"petal_width":1.2,"species":"versicolor"}, {"sepal_length":5.8,"sepal_width":2.6,"petal_length":4,"petal_width":1.2,"species":"versicolor"}, {"sepal_length":5,"sepal_width":2.3,"petal_length":3.3,"petal_width":1,"species":"versicolor"}, {"sepal_length":5.6,"sepal_width":2.7,"petal_length":4.2,"petal_width":1.3,"species":"versicolor"}, {"sepal_length":5.7,"sepal_width":3,"petal_length":4.2,"petal_width":1.2,"species":"versicolor"}, {"sepal_length":6.2,"sepal_width":2.9,"petal_length":4.3,"petal_width":1.3,"species":"versicolor"}, {"sepal_length":6.3,"sepal_width":3.3,"petal_length":6,"petal_width":2.5,"species":"virginica"}, {"sepal_length":5.8,"sepal_width":2.7,"petal_length":5.1,"petal_width":1.9,"species":"virginica"}, {"sepal_length":7.1,"sepal_width":3,"petal_length":5.9,"petal_width":2.1,"species":"virginica"}, {"sepal_length":6.3,"sepal_width":2.9,"petal_length":5.6,"petal_width":1.8,"species":"virginica"}, {"sepal_length":7.6,"sepal_width":3,"petal_length":6.6,"petal_width":2.1,"species":"virginica"}, {"sepal_length":4.9,"sepal_width":2.5,"petal_length":4.5,"petal_width":1.7,"species":"virginica"}, {"sepal_length":7.3,"sepal_width":2.9,"petal_length":6.3,"petal_width":1.8,"species":"virginica"}, {"sepal_length":6.7,"sepal_width":2.5,"petal_length":5.8,"petal_width":1.8,"species":"virginica"}, {"sepal_length":7.2,"sepal_width":3.6,"petal_length":6.1,"petal_width":2.5,"species":"virginica"}, {"sepal_length":6.5,"sepal_width":3.2,"petal_length":5.1,"petal_width":2,"species":"virginica"}, {"sepal_length":6.4,"sepal_width":2.7,"petal_length":5.3,"petal_width":1.9,"species":"virginica"}, {"sepal_length":6.8,"sepal_width":3,"petal_length":5.5,"petal_width":2.1,"species":"virginica"}, {"sepal_length":5.7,"sepal_width":2.5,"petal_length":5,"petal_width":2,"species":"virginica"}, {"sepal_length":5.8,"sepal_width":2.8,"petal_length":5.1,"petal_width":2.4,"species":"virginica"}, {"sepal_length":6.4,"sepal_width":3.2,"petal_length":5.3,"petal_width":2.3,"species":"virginica"}, {"sepal_length":6.5,"sepal_width":3,"petal_length":5.5,"petal_width":1.8,"species":"virginica"}, {"sepal_length":7.7,"sepal_width":3.8,"petal_length":6.7,"petal_width":2.2,"species":"virginica"}, {"sepal_length":7.7,"sepal_width":2.6,"petal_length":6.9,"petal_width":2.3,"species":"virginica"}, {"sepal_length":6,"sepal_width":2.2,"petal_length":5,"petal_width":1.5,"species":"virginica"}, {"sepal_length":6.9,"sepal_width":3.2,"petal_length":5.7,"petal_width":2.3,"species":"virginica"}, {"sepal_length":5.6,"sepal_width":2.8,"petal_length":4.9,"petal_width":2,"species":"virginica"}, {"sepal_length":7.7,"sepal_width":2.8,"petal_length":6.7,"petal_width":2,"species":"virginica"}, {"sepal_length":6.3,"sepal_width":2.7,"petal_length":4.9,"petal_width":1.8,"species":"virginica"}, {"sepal_length":6.7,"sepal_width":3.3,"petal_length":5.7,"petal_width":2.1,"species":"virginica"}, {"sepal_length":7.2,"sepal_width":3.2,"petal_length":6,"petal_width":1.8,"species":"virginica"}, {"sepal_length":6.2,"sepal_width":2.8,"petal_length":4.8,"petal_width":1.8,"species":"virginica"}, {"sepal_length":6.1,"sepal_width":3,"petal_length":4.9,"petal_width":1.8,"species":"virginica"}, {"sepal_length":6.4,"sepal_width":2.8,"petal_length":5.6,"petal_width":2.1,"species":"virginica"}, {"sepal_length":7.2,"sepal_width":3,"petal_length":5.8,"petal_width":1.6,"species":"virginica"}, {"sepal_length":7.9,"sepal_width":3.8,"petal_length":6.4,"petal_width":2,"species":"virginica"}, {"sepal_length":6.4,"sepal_width":2.8,"petal_length":5.6,"petal_width":2.2,"species":"virginica"}, {"sepal_length":6.3,"sepal_width":2.8,"petal_length":5.1,"petal_width":1.5,"species":"virginica"}, {"sepal_length":6.1,"sepal_width":2.6,"petal_length":5.6,"petal_width":1.4,"species":"virginica"}, {"sepal_length":7.7,"sepal_width":3,"petal_length":6.1,"petal_width":2.3,"species":"virginica"}, {"sepal_length":6.3,"sepal_width":3.4,"petal_length":5.6,"petal_width":2.4,"species":"virginica"}, {"sepal_length":6.4,"sepal_width":3.1,"petal_length":5.5,"petal_width":1.8,"species":"virginica"}, {"sepal_length":6,"sepal_width":3,"petal_length":4.8,"petal_width":1.8,"species":"virginica"}, {"sepal_length":6.9,"sepal_width":3.1,"petal_length":5.4,"petal_width":2.1,"species":"virginica"}, {"sepal_length":6.7,"sepal_width":3.1,"petal_length":5.6,"petal_width":2.4,"species":"virginica"}, {"sepal_length":6.9,"sepal_width":3.1,"petal_length":5.1,"petal_width":2.3,"species":"virginica"}, {"sepal_length":5.8,"sepal_width":2.7,"petal_length":5.1,"petal_width":1.9,"species":"virginica"}, {"sepal_length":6.8,"sepal_width":3.2,"petal_length":5.9,"petal_width":2.3,"species":"virginica"}, {"sepal_length":6.7,"sepal_width":3.3,"petal_length":5.7,"petal_width":2.5,"species":"virginica"}, {"sepal_length":6.7,"sepal_width":3,"petal_length":5.2,"petal_width":2.3,"species":"virginica"}, {"sepal_length":6.3,"sepal_width":2.5,"petal_length":5,"petal_width":1.9,"species":"virginica"}, {"sepal_length":6.5,"sepal_width":3,"petal_length":5.2,"petal_width":2,"species":"virginica"}, {"sepal_length":6.2,"sepal_width":3.4,"petal_length":5.4,"petal_width":2.3,"species":"virginica"}]
其中,訓練集包含 130 個項目,測試集包含 14 個。如果你看看這些數據是什么樣子,你會看到
如下內容:
{ "sepal_length": 5.1, "sepal_width": 3.5, "petal_length": 1.4, "petal_width": 0.2, "species": "setosa" }
我們可以看到萼片和花瓣的長度和寬度的四個不同特征,以及物種的標簽。
為了能夠將它與 Tensorflow.js 一起使用,我們需要將這些數據塑造成框架能夠理解的格式,在這種情況下,對于訓練數據,它將是 [130, 4] 的 130 個樣本,每個樣本有四個特征。
import * as trainingSet from "training.json"; import * as testSet from "testing.json"; const trainingData = tf.tensor2d( trainingSet.map(item => [ item.sepal_length, item.sepal_width, item.petal_length, item.petal_width ]), [130, 4] ); const testData = tf.tensor2d( testSet.map(item => [ item.sepal_length, item.sepal_width, item.petal_length, item.petal_width ]), [14, 4] );
接下來,我們還需要對輸出數據進行整形:
const output = tf.tensor2d(trainingSet.map(item => [ item.species === 'setosa' ? 1 : 0, item.species === 'virginica' ? 1 : 0, item.species === 'versicolor' ? 1 : 0 ]), [130,3])
然后,一旦我們的數據準備就緒,我們就可以繼續創建模型:
const model = tf.sequential(); model.add(tf.layers.dense( { inputShape: 4, activation: 'sigmoid', units: 10 } )); model.add(tf.layers.dense( { inputShape: 10, units: 3, activation: 'softmax' } ));
在上面的代碼示例中,我們首先實例化一個順序模型,添加一個輸入和輸出層。
你可以看到內部使用的參數(inputShape, activation, and units
)超出了本文的范圍,因為它們可能會根據你創建的模型、使用的數據類型等而有所不同。
一旦我們的模型準備就緒,我們就可以使用我們的數據對其進行訓練:
async function train_data(){ for(let i=0;i<15;i++){ const res = await model.fit(trainingData, outputData,{epochs: 40}); } } async function main() { await train_data(); model.predict(testSet).print(); }
如果這運作良好,你可以開始用自定義用戶輸入替換測試數據。
一旦我們調用我們的 main
函數,預測的輸出將看起來像以下三個選項之一:
[1,0,0] // Setosa[0,1,0] // Virginica[0,0,1] // Versicolor
預測返回一個由三個數字組成的數組,表示數據屬于三個類別之一的概率。 最接近 1 的數字是最高預測值。
例如,如果分類的輸出為 [0.0002, 0.9494, 0.0503]
,則數組的第二個元素最高,因此模型預測新的輸入很可能是 Virginica。
這就是 Tensorflow.js 中的簡單神經網絡!
我們只討論了 Irises 的一個小數據集,但如果您想繼續使用更大的數據集或處理圖像,步驟將是相同的:
收集數據;
在訓練集和測試集之間拆分;
重新格式化數據以便 Tensorflow.js 可以理解它;
選擇你的算法;
擬合數據;
預測。
如果你想保存創建的模型以便能夠在另一個應用程序中加載它并預測新數據,你可以使用以下行來執行此操作:
await model.save('file:///path/to/my-model'); // in Node.js
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>Tensorflow.js</title> <link rel="stylesheet" href="src/styles.css" rel="external nofollow" > </head> <body> <h2>使用 Tensorflow.js 在 JavaScript 中定義、訓練和運行機器學習模型</h2> <section class="data-inputs"> <h4>鳶尾花分類</h4> <p>正在訓練中...</p> <p class="training-steps"></p> <div class="input-block"> <label for="sepal-length">Sepal lenth:</label> <input name="sepal-length" type="number" min="0" max="100" placeholder="1.5"> </div> <div class="input-block"> <label for="sepal-width">Sepal width:</label> <input name="sepal-width" type="number" min="0" max="100" placeholder="0.4"> </div> <div class="input-block"> <label for="petal-length">Petal length:</label> <input name="petal-length" type="number" min="0" max="100" placeholder="1.0"> </div> <div class="input-block"> <label for="petal-width">Petal width:</label> <input name="petal-width" type="number" min="0" max="100" placeholder="0.7"> </div> <button class="predict" disabled>預測</button> </section> <section class="prediction-block"> <p>鳶尾花 預測:</p> <p class="prediction"></p> </section> <script src="src/index.js"></script> </body> </html>
import * as tf from "@tensorflow/tfjs"; import trainingSet from "./training.json"; import testSet from "./testing.json"; let trainingData, testingData, outputData, model; let training = true; let predictButton = document.getElementsByClassName("predict")[0]; const init = async () => { splitData(); createModel(); await trainData(); if (!training) { predictButton.disabled = false; predictButton.onclick = () => { const inputData = getInputData(); predict(inputData); }; } }; const splitData = () => { trainingData = tf.tensor2d( trainingSet.map(item => [ item.sepal_length, item.sepal_width, item.petal_length, item.petal_width ]), [130, 4] ); testingData = tf.tensor2d( testSet.map(item => [ item.sepal_length, item.sepal_width, item.petal_length, item.petal_width ]), [14, 4] ); outputData = tf.tensor2d( trainingSet.map(item => [ item.species === "setosa" ? 1 : 0, item.species === "virginica" ? 1 : 0, item.species === "versicolor" ? 1 : 0 ]), [130, 3] ); }; const createModel = () => { model = tf.sequential(); model.add( tf.layers.dense({ inputShape: 4, activation: "sigmoid", units: 10 }) ); model.add( tf.layers.dense({ inputShape: 10, units: 3, activation: "softmax" }) ); model.compile({ loss: "categoricalCrossentropy", optimizer: tf.train.adam() }); }; const trainData = async () => { let numSteps = 15; let trainingStepsDiv = document.getElementsByClassName("training-steps")[0]; for (let i = 0; i < numSteps; i++) { let res = await model.fit(trainingData, outputData, { epochs: 40 }); trainingStepsDiv.innerHTML = `Training step: ${i}/${numSteps - 1}, loss: ${ res.history.loss[0] }`; if (i === numSteps - 1) { training = false; } } }; const predict = async inputData => { for (let [key, value] of Object.entries(inputData)) { inputData[key] = parseFloat(value); } inputData = [inputData]; let newDataTensor = tf.tensor2d( inputData.map(item => [ item.sepal_length, item.sepal_width, item.petal_length, item.petal_width ]), [1, 4] ); let prediction = model.predict(newDataTensor); displayPrediction(prediction); }; const getInputData = () => { let sepalLength = document.getElementsByName("sepal-length")[0].value; let sepalWidth = document.getElementsByName("sepal-width")[0].value; let petalLength = document.getElementsByName("petal-length")[0].value; let petalWidth = document.getElementsByName("petal-width")[0].value; return { sepal_length: sepalLength, sepal_width: sepalWidth, petal_length: petalLength, petal_width: petalWidth }; }; const displayPrediction = prediction => { let predictionDiv = document.getElementsByClassName("prediction")[0]; let predictionSection = document.getElementsByClassName( "prediction-block" )[0]; let maxProbability = Math.max(...prediction.dataSync()); let predictionIndex = prediction.dataSync().indexOf(maxProbability); let irisPrediction; switch (predictionIndex) { case 0: irisPrediction = "Setosa"; break; case 1: irisPrediction = "Virginica"; break; case 2: irisPrediction = "Versicolor"; break; default: irisPrediction = ""; break; } predictionDiv.innerHTML = irisPrediction; predictionSection.style.display = "block"; }; init();
body { font-family: "Avenir"; } h2 { text-align: center; width: 80%; margin: 0 auto; } .data-inputs { display: block; width: 80%; margin: 0 auto; } .input-block { display: inline-block; width: fit-content; margin: 1em 0.5em 2em 0.5em; } .input-block:first-of-type { margin-left: 0; } .input-block input { width: 7em; height: 2em; } .input-block input::placeholder { color: rgba(0, 0, 0, 0.3); } button { display: block; padding: 0.5em 1em; border-radius: 5px; font-size: 14px; } .prediction-block { display: none; width: 80%; margin: 0 auto; }
{ "name": "Irises Classficaton", "version": "1.0.0", "description": "", "main": "index.html", "scripts": { "start": "parcel index.html --open", "build": "parcel build index.html" }, "dependencies": { "@tensorflow/tfjs": "1.1.2" }, "devDependencies": { "@babel/core": "7.2.0", "parcel-bundler": "^1.6.1" }, "keywords": [] }
效果如下:
以上就是關于“在瀏覽器中怎么實現訓練模型”這篇文章的內容,相信大家都有了一定的了解,希望小編分享的內容對大家有幫助,若想了解更多相關的知識內容,請關注億速云行業資訊頻道。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。