您好,登錄后才能下訂單哦!
在幾何上定義為兩個向量空間之間的一個仿射變換或者仿射映射(來自拉丁語,affinis,"和。..相關")由一個線性變換接上一個平移組成。
inline const trans_affine&trans_affine::scale(double x, double y)
參數一對x橫坐標的縮放系數,參數二對y縱坐標的縮放系數
這里有一個問題:就是圖形的縮放之后,并不是在原有的位置上,進行縮放,而是整體的縮放,比如最明顯的是圓形,圓心的位置發生了改變,所以需要進行平移,恢復到以前的圓心。
inline const trans_affine&trans_affine::rotate(double a)
參數對圖形進行旋轉,旋轉的圓心是坐標的原點(0,0),也就是顯示界面的左上角,和一般的笛卡爾坐標不一樣的地方,Y軸的縱坐標進行了翻轉,Y軸向下逐漸增大。
應用注意事項:參數采用的是弧度的形式,至于弧度(radians)和角度(degrees)之間的區別,請參考其他的章節,不再贅述。所以該參數的范圍是[-pi,pi].pi = 3.141592653.正值表示順時針旋轉,負值逆時針旋轉,旋轉的中心對稱點是(0,0),切記!!很可能會旋轉到界面之外。
Tips:角度轉弧度agg::deg2rad(doubledegrees)
inline const trans_affine&trans_affine::translate(double x, double y)
參數一,X軸平移量,參數二,Y軸平移量
本文不打算描述trans_affine仿射變換的基本原理,其中的代碼在agg_trans_affine.h文件中定義,涉及到的六個仿射變量如下:
double sx, shy, shx, sy, tx, ty;
可以搜索仿射變換的基本原理。
實例代碼如下:
ras.reset();
agg::ellipse ell(400,400,20,70);
//坐標轉換
agg::trans_affine mtx;
//mtx.scale(0.5,1); //x軸縮小到原來的一半
mtx.rotate(agg::deg2rad(30));//旋轉30度
//mtx.translate(200,200);//X,Y坐標分別平移100
typedef agg::conv_transform<agg::ellipse> ell_ct_type;
ell_ct_type ctell(ell,mtx); //矩陣變換
ras.add_path(ctell);
agg::render_scanlines_aa_solid(ras,sl,renb,agg::rgba8(255,0,0));
ras.reset();
這是網上最經典的一個使用例子,但是并沒有說明旋轉是如何實現的,稍微修改了一下代碼:
mtx.rotate(agg::deg2rad(60));//旋轉60度
結果:發現界面上什么也沒有,橢圓不見了!!
原因:順時針旋轉出界面。
void RotateEclipse()
{
//關于agg::slider_ctrl<agg::rgba8>的基本使用,請參考其他的章節
int value = m_slider1.value();//取值
agg::rendering_buffer &rbuf = rbuf_window();
agg::pixfmt_bgr24 pixf(rbuf);
typedef agg::renderer_base<agg::pixfmt_bgr24> renderer_base_type;
renderer_base_type renb(pixf);
agg::rasterizer_scanline_aa<> ras;
agg::scanline_u8 sl;
ren_bas.clear(agg::rgba8(255,255,255));
agg::trans_affine mtx;
//mtx.scale(0.5,0.5); //x軸縮小到原來的一半
mtx.rotate(agg::deg2rad(value));//旋轉30度
//mtx.translate(100 ,100);//X,Y坐標分別平移100
agg::ellipse ell(900,900,20,30);
typedef agg::conv_transform<agg::ellipse> ell_ct_type;
ell_ct_type ctell(ell,mtx); //矩陣變換
ras.reset();
ras.add_path(ctell);
agg::render_scanlines_aa_solid(ras,sl,renb,agg::rgba8(255,0,0));
agg::render_ctrl(ras, sl, renb, m_slider1);
}
目前已經很難下載到,早期的項目有應用到,沒有繼續更新!!
如下代碼對矩形進行縮放:
ras.reset();
agg::path_storage ps;
ps.move_to(30,30);
ps.line_to(50,30);
ps.line_to(50,50);
ps.line_to(30,50);
ps.line_to(30,30);
agg::trans_affine mtx;
//橫坐標放大2倍,縱坐標放大3倍
mtx*= agg::trans_affine_scaling(2, 3);
//橫坐標平移100,縱坐標平移300,正數向右,負數向左
mtx*=agg::trans_affine_translation(100,100);
typedefagg::conv_transform<agg::path_storage> ell_ct_type;
ell_ct_type ctell(ps,mtx); //矩陣變換
typedef agg::conv_stroke<ell_ct_type>ell_cc_cs_type;
ell_cc_cs_typecsccell(ctell);
ras.add_path(ctell);
agg::trans_affine mtx;
mtx.scale(0.5,0.5); //x軸縮小到原來的一半
mtx.rotate(agg::deg2rad(40));//旋轉30度
mtx.translate(100 ,100);//X,Y坐標分別平移100
typedefagg::conv_transform<agg::path_storage> ell_ct_type;
ell_ct_type ctell(ps,mtx); //矩陣變換
typedef agg::conv_stroke<ell_ct_type>ell_cc_cs_type;
ell_cc_cs_type csccell(ctell);
ras.add_path(csccell);
在笛卡爾坐標系中(Cartesian coordinates)仿射轉換(affine transformation)是一種線性的轉換(在一開始的時候就設定了)。她們可以自由的旋轉(rotation),縮放(scaling),平移(translation)和剪切變換(skewing).經過任意的仿射變換,線段仍然是線段,她永遠不可能編程一根曲線。
一言以蔽之,任何的矩陣變換都可以用一系列的離散變換實現。
原文如下:
//============================================================trans_affine
//
// See Implementation agg_trans_affine.cpp
//
// Affine transformation are lineartransformations in Cartesiancoordinates
// (strictly speaking not only inCartesian, but for the beginning wewill
// think so). They are rotation, scaling,translation and skewing.
// After any affine transformation a linesegment remains a line segment
// and it will never become a curve.
//
// There will be no math about matrixcalculations, since it has been
// described many times. Ask yourself avery simple question:
// "why do we need to understand anduse some matrix stuff insteadof just
// rotating, scaling and so on". Theanswers are:
//
// 1. Any combination of transformationscan be done by only 4multiplications
// and 4 additions in floatingpoint.
// 2. One matrix transformation isequivalent to the number ofconsecutive
// discrete transformations,i.e. the matrix "accumulates" alltransformations
// in the order of theirsettings. Suppose we have 4 transformations:
// * rotate by 30 degrees,
// * scale X to 2.0,
// * scale Y to 1.5,
// * move to (100, 100).
// The result will depend on theorder of these transformations,
// and the advantage of matrixis that the sequence of discret calls:
// rotate(30), scaleX(2.0),scaleY(1.5), move(100,100)
// will have exactly the sameresult as the following matrixtransformations:
//
// affine_matrix m;
// m *= rotate_matrix(30);
// m *= scaleX_matrix(2.0);
// m *= scaleY_matrix(1.5);
// m *= move_matrix(100,100);
//
// m.transform_my_point_at_last(x, y);
//
// What is the good of it? In real life wewill set-up the matrix onlyonce
// and then transform many points, letalone the convenience to set any
// combination of transformations.
//
// So, how to use it? Very easy - literallyas it's shown above. Notquite,
// let us write a correct example:
//
// agg::trans_affine m;
// m *= agg::trans_affine_rotation(30.0 *3.1415926 / 180.0);
// m *= agg::trans_affine_scaling(2.0,1.5);
// m *=agg::trans_affine_translation(100.0, 100.0);
// m.transform(&x, &y);
//
// The affine matrix is all you need toperform any lineartransformation,
// but all transformations have originpoint (0,0). It means that we needto
// use 2 translations if we want to rotatesometing around (100,100):
//
// m *= agg::trans_affine_translation(-100.0,-100.0); // move to (0,0)
// m *= agg::trans_affine_rotation(30.0 *3.1415926 / 180.0); // rotate
// m *=agg::trans_affine_translation(100.0, 100.0); // move back to (100,100)
//----------------------------------------------------------------------
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。