91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

PyTorch怎么實現圖像識別

發布時間:2022-02-25 13:55:30 來源:億速云 閱讀:177 作者:iii 欄目:開發技術

這篇文章主要介紹“PyTorch怎么實現圖像識別”,在日常操作中,相信很多人在PyTorch怎么實現圖像識別問題上存在疑惑,小編查閱了各式資料,整理出簡單好用的操作方法,希望對大家解答”PyTorch怎么實現圖像識別”的疑惑有所幫助!接下來,請跟著小編一起來學習吧!

    概述

    今天我們要來做一個進階的花分類問題. 不同于之前做過的鳶尾花, 這次我們會分析 102 中不同的花. 是不是很上頭呀.

    預處理

    導包

    常規操作, 沒什么好解釋的. 缺模塊的同學自行pip -install.

    import numpy as np
    import time
    from matplotlib import pyplot as plt
    import json
    import copy
    import os
    import torch
    from torch import nn
    from torch import optim
    from torchvision import transforms, models, datasets

    數據讀取與預處理

    數據預處理部分:

    數據增強: torchvision 中 transforms 模塊自帶功能, 用于擴充數據樣本

    數據預處理: torchvision 中 transforms 也幫我們實現好了

    數據分批: DataLoader 模塊直接讀取 batch 數據

    # ----------------1. 數據讀取與預處理------------------
    
    # 路徑
    data_dir = './flower_data/'
    train_dir = data_dir + '/train'
    valid_dir = data_dir + '/valid'
    
    # 制作數據源
    data_transforms = {
        'train': transforms.Compose([transforms.RandomRotation(45),  #隨機旋轉,-45到45度之間隨機選
            transforms.CenterCrop(224),  #從中心開始裁剪
            transforms.RandomHorizontalFlip(p=0.5),  #隨機水平翻轉 選擇一個概率概率
            transforms.RandomVerticalFlip(p=0.5),  #隨機垂直翻轉
            transforms.ColorJitter(brightness=0.2, contrast=0.1, saturation=0.1, hue=0.1),  #參數1為亮度, 參數2為對比度,參數3為飽和度,參數4為色相
            transforms.RandomGrayscale(p=0.025),  #概率轉換成灰度率, 3通道就是R=G=B
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])  #均值, 標準差
        ]),
        'valid': transforms.Compose([transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ]),
    }
    
    batch_size = 8
    
    image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'valid']}
    dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True) for x in ['train', 'valid']}
    dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'valid']}
    class_names = image_datasets['train'].classes
    
    # 調試輸出
    print(image_datasets)
    print(dataloaders)
    print(dataset_sizes)
    print(class_names)
    
    # 讀取標簽對應的實際名字
    with open('cat_to_name.json', 'r') as f:
        cat_to_name = json.load(f)
    
    print(cat_to_name)
    
    輸出結果:
    {'train': Dataset ImageFolder
        Number of datapoints: 6552
        Root location: ./flower_data/train
        StandardTransform
    Transform: Compose(
                   RandomRotation(degrees=(-45, 45), resample=False, expand=False)
                   CenterCrop(size=(224, 224))
                   RandomHorizontalFlip(p=0.5)
                   RandomVerticalFlip(p=0.5)
                   ColorJitter(brightness=[0.8, 1.2], contrast=[0.9, 1.1], saturation=[0.9, 1.1], hue=[-0.1, 0.1])
                   RandomGrayscale(p=0.025)
                   ToTensor()
                   Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
               ), 'valid': Dataset ImageFolder
        Number of datapoints: 818
        Root location: ./flower_data/valid
        StandardTransform
    Transform: Compose(
                   Resize(size=256, interpolation=PIL.Image.BILINEAR)
                   CenterCrop(size=(224, 224))
                   ToTensor()
                   Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
               )}
    
    {'train': <torch.utils.data.dataloader.DataLoader object at 0x000001B718A277F0>, 'valid': <torch.utils.data.dataloader.DataLoader object at 0x000001B718A27898>}
    
    {'train': 6552, 'valid': 818}
    
    ['1', '10', '100', '101', '102', '11', '12', '13', '14', '15', '16', '17', '18', '19', '2', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '3', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '4', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '5', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '6', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '7', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '8', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '9', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99']
    
    {'21': 'fire lily', '3': 'canterbury bells', '45': 'bolero deep blue', '1': 'pink primrose', '34': 'mexican aster', '27': 'prince of wales feathers', '7': 'moon orchid', '16': 'globe-flower', '25': 'grape hyacinth', '26': 'corn poppy', '79': 'toad lily', '39': 'siam tulip', '24': 'red ginger', '67': 'spring crocus', '35': 'alpine sea holly', '32': 'garden phlox', '10': 'globe thistle', '6': 'tiger lily', '93': 'ball moss', '33': 'love in the mist', '9': 'monkshood', '102': 'blackberry lily', '14': 'spear thistle', '19': 'balloon flower', '100': 'blanket flower', '13': 'king protea', '49': 'oxeye daisy', '15': 'yellow iris', '61': 'cautleya spicata', '31': 'carnation', '64': 'silverbush', '68': 'bearded iris', '63': 'black-eyed susan', '69': 'windflower', '62': 'japanese anemone', '20': 'giant white arum lily', '38': 'great masterwort', '4': 'sweet pea', '86': 'tree mallow', '101': 'trumpet creeper', '42': 'daffodil', '22': 'pincushion flower', '2': 'hard-leaved pocket orchid', '54': 'sunflower', '66': 'osteospermum', '70': 'tree poppy', '85': 'desert-rose', '99': 'bromelia', '87': 'magnolia', '5': 'english marigold', '92': 'bee balm', '28': 'stemless gentian', '97': 'mallow', '57': 'gaura', '40': 'lenten rose', '47': 'marigold', '59': 'orange dahlia', '48': 'buttercup', '55': 'pelargonium', '36': 'ruby-lipped cattleya', '91': 'hippeastrum', '29': 'artichoke', '71': 'gazania', '90': 'canna lily', '18': 'peruvian lily', '98': 'mexican petunia', '8': 'bird of paradise', '30': 'sweet william', '17': 'purple coneflower', '52': 'wild pansy', '84': 'columbine', '12': "colt's foot", '11': 'snapdragon', '96': 'camellia', '23': 'fritillary', '50': 'common dandelion', '44': 'poinsettia', '53': 'primula', '72': 'azalea', '65': 'californian poppy', '80': 'anthurium', '76': 'morning glory', '37': 'cape flower', '56': 'bishop of llandaff', '60': 'pink-yellow dahlia', '82': 'clematis', '58': 'geranium', '75': 'thorn apple', '41': 'barbeton daisy', '95': 'bougainvillea', '43': 'sword lily', '83': 'hibiscus', '78': 'lotus lotus', '88': 'cyclamen', '94': 'foxglove', '81': 'frangipani', '74': 'rose', '89': 'watercress', '73': 'water lily', '46': 'wallflower', '77': 'passion flower', '51': 'petunia'}

    數據可視化

    雖然我也不知道這些都是什么花, 但是還是一起來看一下. 有知道的大佬可以評論區留個言.

    # ----------------2. 展示下數據------------------
    def im_convert(tensor):
        """ 展示數據"""
    
        image = tensor.to("cpu").clone().detach()
        image = image.numpy().squeeze()
        image = image.transpose(1, 2, 0)
        image = image * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))
        image = image.clip(0, 1)
    
        return image
    
    
    def im_convert(tensor):
        """ 展示數據"""
    
        image = tensor.to("cpu").clone().detach()
        image = image.numpy().squeeze()
        image = image.transpose(1, 2, 0)
        image = image * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))
        image = image.clip(0, 1)
    
        return image
    
    fig=plt.figure(figsize=(20, 12))
    columns = 4
    rows = 2
    
    dataiter = iter(dataloaders['valid'])
    inputs, classes = dataiter.next()
    
    for idx in range (columns*rows):
        ax = fig.add_subplot(rows, columns, idx+1, xticks=[], yticks=[])
        ax.set_title(cat_to_name[str(int(class_names[classes[idx]]))])
        plt.imshow(im_convert(inputs[idx]))
    plt.show()

    輸出結果:

    PyTorch怎么實現圖像識別

    主體

    加載參數

    # ----------------3. 加載models中提供的模型------------------
    
    # 直接使用訓練好的權重當做初始化參數
    model_name = "resnet"  # 可選的比較多 ['resnet', 'alexnet', 'vgg', 'squeezenet', 'densenet', 'inception']
    
    # 是否使用人家訓練好的特征來做
    feature_extract = True
    
    # 是否使用GPU訓練
    train_on_gpu = torch.cuda.is_available()
    
    if not train_on_gpu:
        print('CUDA is not available.  Training on CPU ...')
    else:
        print('CUDA is not available.  Training on CPU ...')
    
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    
    def set_parameter_requires_grad(model, feature_extracting):
        if feature_extracting:
            for param in model.parameters():
                param.requires_grad = False
    
    
    model_ft = models.resnet152()
    print(model_ft)
    
    輸出結果:
    CUDA is not available.  Training on CPU ...
    ResNet(
      (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
      (layer1): Sequential(
        (0): Bottleneck(
          (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
          (downsample): Sequential(
            (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (1): Bottleneck(
          (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (2): Bottleneck(
          (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
      )
      (layer2): Sequential(
        (0): Bottleneck(
          (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
          (downsample): Sequential(
            (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
            (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (1): Bottleneck(
          (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (2): Bottleneck(
          (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (3): Bottleneck(
          (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (4): Bottleneck(
          (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (5): Bottleneck(
          (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (6): Bottleneck(
          (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (7): Bottleneck(
          (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
      )
      (layer3): Sequential(
        (0): Bottleneck(
          (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
          (downsample): Sequential(
            (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
            (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (1): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (2): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (3): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (4): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (5): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (6): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (7): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (8): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (9): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (10): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (11): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (12): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (13): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (14): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (15): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (16): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (17): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (18): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (19): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (20): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (21): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (22): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (23): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (24): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (25): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (26): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (27): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (28): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (29): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (30): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (31): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (32): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (33): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (34): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (35): Bottleneck(
          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
      )
      (layer4): Sequential(
        (0): Bottleneck(
          (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
          (downsample): Sequential(
            (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
            (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (1): Bottleneck(
          (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
        (2): Bottleneck(
          (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
        )
      )
      (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
      (fc): Linear(in_features=2048, out_features=1000, bias=True)
    )

    建立模型

    # ----------------4. 參考PyTorch官網例子------------------
    
    def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
        # 選擇合適的模型,不同模型的初始化方法稍微有點區別
        model_ft = None
        input_size = 0
    
        if model_name == "resnet":
            """ Resnet152
            """
            model_ft = models.resnet152(pretrained=use_pretrained)
            set_parameter_requires_grad(model_ft, feature_extract)
            num_ftrs = model_ft.fc.in_features
            model_ft.fc = nn.Sequential(nn.Linear(num_ftrs, 102),
                                       nn.LogSoftmax(dim=1))
            input_size = 224
    
        elif model_name == "alexnet":
            """ Alexnet
            """
            model_ft = models.alexnet(pretrained=use_pretrained)
            set_parameter_requires_grad(model_ft, feature_extract)
            num_ftrs = model_ft.classifier[6].in_features
            model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
            input_size = 224
    
        elif model_name == "vgg":
            """ VGG11_bn
            """
            model_ft = models.vgg16(pretrained=use_pretrained)
            set_parameter_requires_grad(model_ft, feature_extract)
            num_ftrs = model_ft.classifier[6].in_features
            model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
            input_size = 224
    
        elif model_name == "squeezenet":
            """ Squeezenet
            """
            model_ft = models.squeezenet1_0(pretrained=use_pretrained)
            set_parameter_requires_grad(model_ft, feature_extract)
            model_ft.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1,1), stride=(1,1))
            model_ft.num_classes = num_classes
            input_size = 224
    
        elif model_name == "densenet":
            """ Densenet
            """
            model_ft = models.densenet121(pretrained=use_pretrained)
            set_parameter_requires_grad(model_ft, feature_extract)
            num_ftrs = model_ft.classifier.in_features
            model_ft.classifier = nn.Linear(num_ftrs, num_classes)
            input_size = 224
    
        elif model_name == "inception":
            """ Inception v3
            Be careful, expects (299,299) sized images and has auxiliary output
            """
            model_ft = models.inception_v3(pretrained=use_pretrained)
            set_parameter_requires_grad(model_ft, feature_extract)
            # Handle the auxilary net
            num_ftrs = model_ft.AuxLogits.fc.in_features
            model_ft.AuxLogits.fc = nn.Linear(num_ftrs, num_classes)
            # Handle the primary net
            num_ftrs = model_ft.fc.in_features
            model_ft.fc = nn.Linear(num_ftrs,num_classes)
            input_size = 299
    
        else:
            print("Invalid model name, exiting...")
            exit()
    
        return model_ft, input_size

    設置哪些層需要訓練

    # ----------------5. 設置哪些層需要訓練------------------
    
    model_ft, input_size = initialize_model(model_name, 102, feature_extract, use_pretrained=True)
    
    # GPU計算
    model_ft = model_ft.to(device)
    
    # 模型保存
    filename='checkpoint.pth'
    
    # 是否訓練所有層
    params_to_update = model_ft.parameters()
    print("Params to learn:")
    if feature_extract:
        params_to_update = []
        for name,param in model_ft.named_parameters():
            if param.requires_grad == True:
                params_to_update.append(param)
                print("\t",name)
    else:
        for name,param in model_ft.named_parameters():
            if param.requires_grad == True:
                print("\t",name)

    優化器設置

    # ----------------6. 優化器設置------------------
    
    # 優化器設置
    optimizer_ft = optim.Adam(params_to_update, lr=1e-2)
    scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)  # 學習率每7個epoch衰減成原來的1/10
    
    # 最后一層已經LogSoftmax()了,所以不能nn.CrossEntropyLoss()來計算了
    # nn.CrossEntropyLoss()相當于logSoftmax()和nn.NLLLoss()整合
    criterion = nn.NLLLoss()

    訓練模塊

    # ----------------7. 訓練模塊------------------
    
    def train_model(model, dataloaders, criterion, optimizer, num_epochs=25, is_inception=False, filename=filename):
        since = time.time()
        best_acc = 0
        """
        checkpoint = torch.load(filename)
        best_acc = checkpoint['best_acc']
        model.load_state_dict(checkpoint['state_dict'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        model.class_to_idx = checkpoint['mapping']
        """
        model.to(device)
    
        val_acc_history = []
        train_acc_history = []
        train_losses = []
        valid_losses = []
        LRs = [optimizer.param_groups[0]['lr']]
    
        best_model_wts = copy.deepcopy(model.state_dict())
    
        for epoch in range(num_epochs):
            print('Epoch {}/{}'.format(epoch, num_epochs - 1))
            print('-' * 10)
    
            # 訓練和驗證
            for phase in ['train', 'valid']:
                if phase == 'train':
                    model.train()  # 訓練
                else:
                    model.eval()  # 驗證
    
                running_loss = 0.0
                running_corrects = 0
    
                # 把數據都取個遍
                for inputs, labels in dataloaders[phase]:
                    inputs = inputs.to(device)
                    labels = labels.to(device)
    
                    # 清零
                    optimizer.zero_grad()
                    # 只有訓練的時候計算和更新梯度
                    with torch.set_grad_enabled(phase == 'train'):
                        if is_inception and phase == 'train':
                            outputs, aux_outputs = model(inputs)
                            loss1 = criterion(outputs, labels)
                            loss2 = criterion(aux_outputs, labels)
                            loss = loss1 + 0.4 * loss2
                        else:  # resnet執行的是這里
                            outputs = model(inputs)
                            loss = criterion(outputs, labels)
    
                        _, preds = torch.max(outputs, 1)
    
                        # 訓練階段更新權重
                        if phase == 'train':
                            loss.backward()
                            optimizer.step()
    
                    # 計算損失
                    running_loss += loss.item() * inputs.size(0)
                    running_corrects += torch.sum(preds == labels.data)
    
                epoch_loss = running_loss / len(dataloaders[phase].dataset)
                epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
    
                time_elapsed = time.time() - since
                print('Time elapsed {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
                print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
    
                # 得到最好那次的模型
                if phase == 'valid' and epoch_acc > best_acc:
                    best_acc = epoch_acc
                    best_model_wts = copy.deepcopy(model.state_dict())
                    state = {
                        'state_dict': model.state_dict(),
                        'best_acc': best_acc,
                        'optimizer': optimizer.state_dict(),
                    }
                    torch.save(state, filename)
                if phase == 'valid':
                    val_acc_history.append(epoch_acc)
                    valid_losses.append(epoch_loss)
                    scheduler.step(epoch_loss)
                if phase == 'train':
                    train_acc_history.append(epoch_acc)
                    train_losses.append(epoch_loss)
    
            print('Optimizer learning rate : {:.7f}'.format(optimizer.param_groups[0]['lr']))
            LRs.append(optimizer.param_groups[0]['lr'])
            print()
    
        time_elapsed = time.time() - since
        print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
        print('Best val Acc: {:4f}'.format(best_acc))
    
        # 訓練完后用最好的一次當做模型最終的結果
        model.load_state_dict(best_model_wts)
        return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs

    開始訓練

    # ----------------8. 開始訓練------------------
    
    # 訓練
    model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs  = \
        train_model(model_ft, dataloaders, criterion, optimizer_ft, num_epochs=20, is_inception=(model_name=="inception"))
    
    # 再繼續訓練所有層
    for param in model_ft.parameters():
        param.requires_grad = True
    
    # 再繼續訓練所有的參數,學習率調小一點
    optimizer = optim.Adam(params_to_update, lr=1e-4)
    scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
    
    # 損失函數
    criterion = nn.NLLLoss()
    
    # Load the checkpoint
    
    checkpoint = torch.load(filename)
    best_acc = checkpoint['best_acc']
    model_ft.load_state_dict(checkpoint['state_dict'])
    optimizer.load_state_dict(checkpoint['optimizer'])
    #model_ft.class_to_idx = checkpoint['mapping']
    
    model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs  = train_model(model_ft, dataloaders, criterion, optimizer, num_epochs=10, is_inception=(model_name=="inception"))
    
    輸出結果:
    Epoch 0/9
    ----------
    Time elapsed 3m 8s
    train Loss: 1.8128 Acc: 0.8065
    Time elapsed 3m 17s
    valid Loss: 4.6786 Acc: 0.6993
    Optimizer learning rate : 0.0010000
    
    Epoch 1/9
    ----------
    Time elapsed 6m 26s
    train Loss: 1.5370 Acc: 0.8268
    Time elapsed 6m 34s
    valid Loss: 4.3483 Acc: 0.7017
    Optimizer learning rate : 0.0010000
    
    Epoch 2/9
    ----------
    Time elapsed 9m 44s
    train Loss: 1.3812 Acc: 0.8367
    Time elapsed 9m 52s
    valid Loss: 4.0840 Acc: 0.7127
    Optimizer learning rate : 0.0010000
    
    Epoch 3/9
    ----------
    Time elapsed 13m 2s
    train Loss: 1.4777 Acc: 0.8312
    Time elapsed 13m 10s
    valid Loss: 4.2493 Acc: 0.7078
    Optimizer learning rate : 0.0010000
    
    Epoch 4/9
    ----------
    Time elapsed 16m 22s
    train Loss: 1.3351 Acc: 0.8434
    Time elapsed 16m 31s
    valid Loss: 3.6103 Acc: 0.7396
    Optimizer learning rate : 0.0010000
    
    Epoch 5/9
    ----------
    Time elapsed 19m 42s
    train Loss: 1.2934 Acc: 0.8466
    Time elapsed 19m 51s
    valid Loss: 3.3350 Acc: 0.7494
    Optimizer learning rate : 0.0010000
    
    Epoch 6/9
    ----------
    Time elapsed 23m 2s
    train Loss: 1.3289 Acc: 0.8379
    Time elapsed 23m 11s
    valid Loss: 3.9728 Acc: 0.7164
    Optimizer learning rate : 0.0010000
    
    Epoch 7/9
    ----------
    Time elapsed 26m 22s
    train Loss: 1.3739 Acc: 0.8321
    Time elapsed 26m 31s
    valid Loss: 3.7483 Acc: 0.7237
    Optimizer learning rate : 0.0010000
    
    Epoch 8/9
    ----------
    Time elapsed 29m 43s
    train Loss: 1.2110 Acc: 0.8495
    Time elapsed 29m 52s
    valid Loss: 3.7712 Acc: 0.7164
    Optimizer learning rate : 0.0010000
    
    Epoch 9/9
    ----------
    Time elapsed 33m 2s
    train Loss: 1.2643 Acc: 0.8452
    Time elapsed 33m 11s
    valid Loss: 3.7012 Acc: 0.7311
    Optimizer learning rate : 0.0010000
    
    Training complete in 33m 11s
    Best val Acc: 0.749389

    測試

    測試網絡效果

    # ----------------9. 測試網絡效果------------------
    
    probs, classes = predict(image_path, model)
    print(probs)
    print(classes)
    
    輸出結果:
    [ 0.01558163  0.01541934  0.01452626  0.01443549  0.01407339]
    ['70', '3', '45', '62', '55']

    測試訓練好的模型

    # ----------------10. 測試訓練好的模型------------------
    
    model_ft, input_size = initialize_model(model_name, 102, feature_extract, use_pretrained=True)
    
    # GPU模式
    model_ft = model_ft.to(device)
    
    # 保存文件的名字
    filename = 'seriouscheckpoint.pth'
    
    # 加載模型
    checkpoint = torch.load(filename)
    best_acc = checkpoint['best_acc']
    model_ft.load_state_dict(checkpoint['state_dict'])

    測試數據預處理

    注意:

    • 測試數據處理方法需要跟訓練時一致才可以

    • crop 操作的目的是保證輸入的大小是一致的

    • 標準化也是必須的, 用跟訓練數據相同的 mean 和 std

    • 訓練數據是在 0~1 上進行標準化, 所以測試數據也需要先歸一化

    • PyTorch 中的顏色是第一個維度, 跟很多工具包都不一樣, 需要轉換

    # ----------------11. 測試數據預處理------------------
    
    def process_image(image_path):
        # 讀取測試數據
        img = Image.open(image_path)
        # Resize,thumbnail方法只能進行縮小,所以進行了判斷
        if img.size[0] > img.size[1]:
            img.thumbnail((10000, 256))
        else:
            img.thumbnail((256, 10000))
        # Crop操作
        left_margin = (img.width - 224) / 2
        bottom_margin = (img.height - 224) / 2
        right_margin = left_margin + 224
        top_margin = bottom_margin + 224
        img = img.crop((left_margin, bottom_margin, right_margin,
                        top_margin))
        # 相同的預處理方法
        img = np.array(img) / 255
        mean = np.array([0.485, 0.456, 0.406])  # provided mean
        std = np.array([0.229, 0.224, 0.225])  # provided std
        img = (img - mean) / std
    
        # 注意顏色通道應該放在第一個位置
        img = img.transpose((2, 0, 1))
    
        return img
    
    
    def imshow(image, ax=None, title=None):
        """展示數據"""
        if ax is None:
            fig, ax = plt.subplots()
    
        # 顏色通道還原
        image = np.array(image).transpose((1, 2, 0))
    
        # 預處理還原
        mean = np.array([0.485, 0.456, 0.406])
        std = np.array([0.229, 0.224, 0.225])
        image = std * image + mean
        image = np.clip(image, 0, 1)
    
        ax.imshow(image)
        ax.set_title(title)
    
        return ax
    
    image_path = 'image_06621.jpg'
    img = process_image(image_path)
    imshow(img)
    
    # 得到一個batch的測試數據
    dataiter = iter(dataloaders['valid'])
    images, labels = dataiter.next()
    
    model_ft.eval()
    
    if train_on_gpu:
        output = model_ft(images.cuda())
    else:
        output = model_ft(images)
    
    _, preds_tensor = torch.max(output, 1)
    
    preds = np.squeeze(preds_tensor.numpy()) if not train_on_gpu else np.squeeze(preds_tensor.cpu().numpy())

    展示預測結果

    # ----------------12. 展示預測結果------------------
    
    fig=plt.figure(figsize=(20, 20))
    columns =4
    rows = 2
    
    for idx in range (columns*rows):
        ax = fig.add_subplot(rows, columns, idx+1, xticks=[], yticks=[])
        plt.imshow(im_convert(images[idx]))
        ax.set_title("{} ({})".format(cat_to_name[str(preds[idx])], cat_to_name[str(labels[idx].item())]),
                     color=("green" if cat_to_name[str(preds[idx])]==cat_to_name[str(labels[idx].item())] else "red"))
    plt.show()

    輸出結果:

    PyTorch怎么實現圖像識別

    到此,關于“PyTorch怎么實現圖像識別”的學習就結束了,希望能夠解決大家的疑惑。理論與實踐的搭配能更好的幫助大家學習,快去試試吧!若想繼續學習更多相關知識,請繼續關注億速云網站,小編會繼續努力為大家帶來更多實用的文章!

    向AI問一下細節

    免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

    AI

    呈贡县| 鱼台县| 榆林市| 林甸县| 于都县| 宣武区| 雷山县| 安阳市| 邢台市| 抚州市| 屏东市| 即墨市| 黎平县| 思茅市| 滦南县| 界首市| 亳州市| 临武县| 南岸区| 吉水县| 恩平市| 甘洛县| 察雅县| 文昌市| 石泉县| 昌宁县| 吴川市| 海盐县| 丰原市| 龙里县| 沂源县| 隆德县| 巴东县| 定襄县| 永福县| 景德镇市| 永泰县| 贵定县| 温州市| 静宁县| 商水县|