91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Pandas中的分組聚合是什么

發布時間:2022-02-25 14:50:49 來源:億速云 閱讀:207 作者:小新 欄目:開發技術

這篇文章給大家分享的是有關Pandas中的分組聚合是什么的內容。小編覺得挺實用的,因此分享給大家做個參考,一起跟隨小編過來看看吧。

一:分組 (groupby)

  • 對數據集進行分組,然后對每組進行統計分析

  • SQL 能夠對數據進行過濾,分組聚合

  • pandas 能利用 groupby 進行更加復雜的分組運算

  • 分組運算過程:split->apply->combine 拆分:進行分組的根據應用:每個分組運行的計算規則合并:把每個分組的計算結果合并起來

Pandas中的分組聚合是什么 

示例代碼:

import pandas as pd
import numpy as np

dict_obj = {'key1' : ['a', 'b', 'a', 'b',
                     'a', 'b', 'a', 'a'],
           'key2' : ['one', 'one', 'two', 'three',
                     'two', 'two', 'one', 'three'],
           'data1': np.random.randn(8),
           'data2': np.random.randn(8)}
df_obj = pd.DataFrame(dict_obj)
print(df_obj)

運行結果:

      data1     data2 key1   key2
0  0.974685 -0.672494    a    one
1 -0.214324  0.758372    b    one
2  1.508838  0.392787    a    two
3  0.522911  0.630814    b  three
4  1.347359 -0.177858    a    two
5 -0.264616  1.017155    b    two
6 -0.624708  0.450885    a    one
7 -1.019229 -1.143825    a  three

一、GroupBy 對象:DataFrameGroupBy,SeriesGroupBy

1. 分組操作
groupby() 進行分組,GroupBy 對象沒有進行實際運算,只是包含分組的中間數據按列名分組:obj.groupby(‘label’)

示例代碼:

print(type(df_obj.groupby('key1'))) # dataframe根據key1進行分組
print(type(df_obj['data1'].groupby(df_obj['key1']))) # dataframe的 data1 列根據 key1 進行分組

運行結果:

<class 'pandas.core.groupby.DataFrameGroupBy'>
<class 'pandas.core.groupby.SeriesGroupBy'>
2. 分組運算
對 GroupBy 對象進行分組運算/多重分組運算,如 mean() 非數值數據不進行分組運算

示例代碼:

grouped1 = df_obj.groupby('key1') # 分組運算
print(grouped1.mean())

grouped2 = df_obj['data1'].groupby(df_obj['key1'])
print(grouped2.mean())

運行結果:

         data1     data2
key1                    
a     0.437389 -0.230101
b     0.014657  0.802114
key1
a    0.437389
b    0.014657
Name: data1, dtype: float64
size() 返回每個分組的元素個數

示例代碼:

print(grouped1.size()) # size
print(grouped2.size())

運行結果:

key1
a    5
b    3
dtype: int64
key1
a    5
b    3
dtype: int64
3. 按自定義的 key 分組
obj.groupby(self_def_key) 自定義的 key 可為列表或多層列表 obj.groupby([‘label1’, ‘label2’])->多層 dataframe

示例代碼:

self_def_key = [0, 1, 2, 3, 3, 4, 5, 7] # 按自定義key分組,列表
print(df_obj.groupby(self_def_key).size())

print(df_obj.groupby([df_obj['key1'], df_obj['key2']]).size()) # 按自定義key分組,多層列表

grouped2 = df_obj.groupby(['key1', 'key2']) # 按多個列多層分組
print(grouped2.size())

grouped3 = df_obj.groupby(['key2', 'key1']) # 多層分組按key的順序進行
print(grouped3.mean())

print(grouped3.mean().unstack()) # unstack可以將多層索引的結果轉換成單層的dataframe

運行結果:

0    1
1    1
2    1
3    2
4    1
5    1
7    1
dtype: int64

key1  key2
a     one      2
     three    1
     two      2
b     one      1
     three    1
     two      1
dtype: int64


key1  key2
a     one      2
     three    1
     two      2
b     one      1
     three    1
     two      1
dtype: int64


              data1     data2
key2  key1                    
one   a     0.174988 -0.110804
     b    -0.214324  0.758372
three a    -1.019229 -1.143825
     b     0.522911  0.630814
two   a     1.428099  0.107465
     b    -0.264616  1.017155

         data1               data2          
key1          a         b         a         b
key2                                        
one    0.174988 -0.214324 -0.110804  0.758372
three -1.019229  0.522911 -1.143825  0.630814
two    1.428099 -0.264616  0.107465  1.017155

二、GroupBy對象支持迭代操作

每次迭代返回一個元組 (group_name, group_data)可用于分組數據的具體運算
1. 單層分組

示例代碼:

for group_name, group_data in grouped1: # 單層分組,根據key1
   print(group_name)
   print(group_data)

運行結果:

a
2. 多層分組

示例代碼:

for group_name, group_data in grouped2: # 多層分組,根據key1 和 key2
   print(group_name)
   print(group_data)

運行結果:

('a', 'one')
     data1     data2 key1 key2
0  0.974685 -0.672494    a  one
6 -0.624708  0.450885    a  one

('a', 'three')
     data1     data2 key1   key2
7 -1.019229 -1.143825    a  three

('a', 'two')
     data1     data2 key1 key2
2  1.508838  0.392787    a  two
4  1.347359 -0.177858    a  two

('b', 'one')
     data1     data2 key1 key2
1 -0.214324  0.758372    b  one

('b', 'three')
     data1     data2 key1   key2
3  0.522911  0.630814    b  three

('b', 'two')
     data1     data2 key1 key2
5 -0.264616  1.017155    b  two

三、GroupBy對象可以轉換成列表或字典

示例代碼:

print(list(grouped1)) # GroupBy對象轉換list

print(dict(list(grouped1))) # GroupBy對象轉換dict

運行結果:

[('a',       data1     data2 key1   key2
0  0.974685 -0.672494    a    one
2  1.508838  0.392787    a    two
4  1.347359 -0.177858    a    two
6 -0.624708  0.450885    a    one
7 -1.019229 -1.143825    a  three),
('b',       data1     data2 key1   key2
1 -0.214324  0.758372    b    one
3  0.522911  0.630814    b  three
5 -0.264616  1.017155    b    two)]

{'a':       data1     data2 key1   key2
0  0.974685 -0.672494    a    one
2  1.508838  0.392787    a    two
4  1.347359 -0.177858    a    two
6 -0.624708  0.450885    a    one
7 -1.019229 -1.143825    a  three,
'b':       data1     data2 key1   key2
1 -0.214324  0.758372    b    one
3  0.522911  0.630814    b  three
5 -0.264616  1.017155    b    two}
1. 按列分組、按數據類型分組

示例代碼:

print(df_obj.dtypes) # 按列分組

print(df_obj.groupby(df_obj.dtypes, axis=1).size()) # 按數據類型分組
print(df_obj.groupby(df_obj.dtypes, axis=1).sum())

運行結果:

data1    float64
data2    float64
key1      object
key2      object
dtype: object

float64    2
object     2
dtype: int64

   float64  object
0  0.302191    a one
1  0.544048    b one
2  1.901626    a two
3  1.153725  b three
4  1.169501    a two
5  0.752539    b two
6 -0.173823    a one
7 -2.163054  a three
2. 其他分組方法

示例代碼:

df_obj2 = pd.DataFrame(np.random.randint(1, 10, (5,5)),
                      columns=['a', 'b', 'c', 'd', 'e'],
                      index=['A', 'B', 'C', 'D', 'E'])
df_obj2.ix[1, 1:4] = np.NaN
print(df_obj2)

運行結果:

   a    b    c    d  e
A  7  2.0  4.0  5.0  8
B  4  NaN  NaN  NaN  1
C  3  2.0  5.0  4.0  6
D  3  1.0  9.0  7.0  3
E  6  1.0  6.0  8.0  1
3. 通過字典分組

示例代碼:

mapping_dict = {'a':'Python', 'b':'Python', 'c':'Java', 'd':'C', 'e':'Java'} # 通過字典分組
print(df_obj2.groupby(mapping_dict, axis=1).size())
print(df_obj2.groupby(mapping_dict, axis=1).count()) # 非NaN的個數
print(df_obj2.groupby(mapping_dict, axis=1).sum())

運行結果:

C         1
Java      2
Python    2
dtype: int64

  C  Java  Python
A  1     2       2
B  0     1       1
C  1     2       2
D  1     2       2
E  1     2       2

    C  Java  Python
A  5.0  12.0     9.0
B  NaN   1.0     4.0
C  4.0  11.0     5.0
D  7.0  12.0     4.0
E  8.0   7.0     7.0
4. 通過函數分組,函數傳入的參數為行索引或列索引

示例代碼:

 
df_obj3 = pd.DataFrame(np.random.randint(1, 10, (5,5)),  
                      columns=['a', 'b', 'c', 'd', 'e'],
                      index=['AA', 'BBB', 'CC', 'D', 'EE']) # 通過函數分組

def group_key(idx):  #df_obj3
   """
       idx 為列索引或行索引
   """
   #return idx
   return len(idx)

print(df_obj3.groupby(group_key).size())

# 以上自定義函數等價于
#df_obj3.groupby(len).size()

運行結果:

1    1
2    3
3    1
dtype: int64
5. 通過索引級別分組

示例代碼:

columns = pd.MultiIndex.from_arrays([['Python', 'Java', 'Python', 'Java', 'Python'],
                                    ['A', 'A', 'B', 'C', 'B']], names=['language', 'index']) # 通過索引級別分組
df_obj4 = pd.DataFrame(np.random.randint(1, 10, (5, 5)), columns=columns)
print(df_obj4)

print(df_obj4.groupby(level='language', axis=1).sum()) # 根據language進行分組

print(df_obj4.groupby(level='index', axis=1).sum()) # 根據index進行分組

運行結果:

language Python Java Python Java Python
index         A    A      B    C      B
0             2    7      8    4      3
1             5    2      6    1      2
2             6    4      4    5      2
3             4    7      4    3      1
4             7    4      3    4      8

language  Java  Python
0           11      13
1            3      13
2            9      12
3           10       9
4            8      18

index   A   B  C
0       9  11  4
1       7   8  1
2      10   6  5
3      11   5  3
4      11  11  4

二:聚合 (aggregation)

  • 數組產生標量的過程,如mean()、count()等

  • 常用于對分組后的數據進行計算

示例代碼:

dict_obj = {'key1' : ['a', 'b', 'a', 'b', 
                     'a', 'b', 'a', 'a'],
           'key2' : ['one', 'one', 'two', 'three',
                     'two', 'two', 'one', 'three'],
           'data1': np.random.randint(1,10, 8),
           'data2': np.random.randint(1,10, 8)}
df_obj5 = pd.DataFrame(dict_obj)
print(df_obj5)

運行結果:

   data1  data2 key1   key2
0      3      7    a    one
1      1      5    b    one
2      7      4    a    two
3      2      4    b  three
4      6      4    a    two
5      9      9    b    two
6      3      5    a    one
7      8      4    a  three

1. 內置的聚合函數

sum(), mean(), max(), min(), count(), size(), describe()

示例代碼:

print(df_obj5.groupby('key1').sum())
print(df_obj5.groupby('key1').max())
print(df_obj5.groupby('key1').min())
print(df_obj5.groupby('key1').mean())
print(df_obj5.groupby('key1').size())
print(df_obj5.groupby('key1').count())
print(df_obj5.groupby('key1').describe())

運行結果:

      data1  data2
key1              
a        27     24
b        12     18

     data1  data2 key2
key1                  
a         8      7  two
b         9      9  two

     data1  data2 key2
key1                  
a         3      4  one
b         1      4  one

     data1  data2
key1              
a       5.4    4.8
b       4.0    6.0

key1
a    5
b    3
dtype: int64

     data1  data2  key2
key1                    
a         5      5     5
b         3      3     3

              data1     data2
key1                          
a    count  5.000000  5.000000
    mean   5.400000  4.800000
    std    2.302173  1.303840
    min    3.000000  4.000000
    25%    3.000000  4.000000
    50%    6.000000  4.000000
    75%    7.000000  5.000000
    max    8.000000  7.000000
b    count  3.000000  3.000000
    mean   4.000000  6.000000
    std    4.358899  2.645751
    min    1.000000  4.000000
    25%    1.500000  4.500000
    50%    2.000000  5.000000
    75%    5.500000  7.000000
    max    9.000000  9.000000

2. 可自定義函數,傳入agg方法中

grouped.agg(func)func的參數為groupby索引對應的記錄

示例代碼:

def peak_range(df): # 自定義聚合函數
   """
       返回數值范圍
   """
   #print type(df) #參數為索引所對應的記錄
   return df.max() - df.min()

print(df_obj5.groupby('key1').agg(peak_range))
print(df_obj.groupby('key1').agg(lambda df : df.max() - df.min()))

運行結果:

      data1  data2
key1              
a         5      3
b         8      5

        data1     data2
key1                    
a     2.528067  1.594711
b     0.787527  0.386341
In [25]:

3. 應用多個聚合函數

同時應用多個函數進行聚合操作,使用函數列表

示例代碼:

'''應用多個聚合函數

同時應用多個聚合函數'''
print(df_obj.groupby('key1').agg(['mean', 'std', 'count', peak_range])) # 默認列名為函數名

print(df_obj.groupby('key1').agg(['mean', 'std', 'count', ('range', peak_range)])) # 通過元組提供新的列名

運行結果:

         data1                                data2                           
         mean       std count peak_range      mean       std count peak_range
key1                                                                          
a     0.437389  1.174151     5   2.528067 -0.230101  0.686488     5   1.594711
b     0.014657  0.440878     3   0.787527  0.802114  0.196850     3   0.386341

        data1                               data2                          
         mean       std count     range      mean       std count     range
key1                                                                        
a     0.437389  1.174151     5  2.528067 -0.230101  0.686488     5  1.594711
b     0.014657  0.440878     3  0.787527  0.802114  0.196850     3  0.386341

4. 對不同的列分別作用不同的聚合函數,使用dict

示例代碼:

dict_mapping = {'data1':'mean',
               'data2':'sum'} # 每列作用不同的聚合函數
print(df_obj.groupby('key1').agg(dict_mapping))

dict_mapping = {'data1':['mean','max'],
               'data2':'sum'}
print(df_obj.groupby('key1').agg(dict_mapping))

運行結果:

         data1     data2
key1                    
a     0.437389 -1.150505
b     0.014657  2.406341

        data1               data2
         mean       max       sum
key1                              
a     0.437389  1.508838 -1.150505
b     0.014657  0.522911  2.406341

5. 常用的內置聚合函數

Pandas中的分組聚合是什么 

示例代碼:

import pandas as pd
import numpy as np

dict_obj = {'key1' : ['a', 'b', 'a', 'b',
                     'a', 'b', 'a', 'a'],
           'key2' : ['one', 'one', 'two', 'three',
                     'two', 'two', 'one', 'three'],
           'data1': np.random.randint(1, 10, 8),
           'data2': np.random.randint(1, 10, 8)}
df_obj = pd.DataFrame(dict_obj)
print(df_obj)

k1_sum = df_obj.groupby('key1').sum().add_prefix('sum_') # 按key1分組后,計算data1,data2的統計信息并附加到原始表格中,并添加表頭前綴
print(k1_sum)

運行結果:

   data1  data2 key1   key2
0      5      1    a    one
1      7      8    b    one
2      1      9    a    two
3      2      6    b  three
4      9      8    a    two
5      8      3    b    two
6      3      5    a    one
7      8      3    a  three

     sum_data1  sum_data2
key1                      
a            26         26
b            17         17
聚合運算后會改變原始數據的形狀,如何保持原始數據的形狀?
1. merge
使用merge的外連接,比較復雜

示例代碼:

k1_sum_merge = pd.merge(df_obj, k1_sum, left_on='key1', right_index=True) # 方法1,使用merge
print(k1_sum_merge)

運行結果:

   data1  data2 key1   key2  sum_data1  sum_data2
0      5      1    a    one         26         26
2      1      9    a    two         26         26
4      9      8    a    two         26         26
6      3      5    a    one         26         26
7      8      3    a  three         26         26
1      7      8    b    one         17         17
3      2      6    b  three         17         17
5      8      3    b    two         17         17
2. transform
transform的計算結果和原始數據的形狀保持一致,如:grouped.transform(np.sum)

示例代碼:

k1_sum_tf = df_obj.groupby('key1').transform(np.sum).add_prefix('sum_') # 方法2,使用transform
df_obj[k1_sum_tf.columns] = k1_sum_tf
print(df_obj)

運行結果:

   data1  data2 key1   key2 sum_data1 sum_data2           sum_key2
0      5      1    a    one        26        26  onetwotwoonethree
1      7      8    b    one        17        17        onethreetwo
2      1      9    a    two        26        26  onetwotwoonethree
3      2      6    b  three        17        17        onethreetwo
4      9      8    a    two        26        26  onetwotwoonethree
5      8      3    b    two        17        17        onethreetwo
6      3      5    a    one        26        26  onetwotwoonethree
7      8      3    a  three        26        26  onetwotwoonethree
也可傳入自定義函數,

示例代碼:

def diff_mean(s): # 自定義函數傳入transform
   """
       返回數據與均值的差值
   """
   return s - s.mean()

print(df_obj.groupby('key1').transform(diff_mean))

運行結果:

      data1     data2 sum_data1 sum_data2
0 -0.200000 -4.200000         0         0
1  1.333333  2.333333         0         0
2 -4.200000  3.800000         0         0
3 -3.666667  0.333333         0         0
4  3.800000  2.800000         0         0
5  2.333333 -2.666667         0         0
6 -2.200000 -0.200000         0         0
7  2.800000 -2.200000         0         0

groupby.apply(func)

func函數也可以在各分組上分別調用,最后結果通過pd.concat組裝到一起(數據合并)

示例代碼:

import pandas as pd
import numpy as np

dataset_path = './starcraft.csv'
df_data = pd.read_csv(dataset_path, usecols=['LeagueIndex', 'Age', 'HoursPerWeek',
                                            'TotalHours', 'APM'])

def top_n(df, n=3, column='APM'):
   """
       返回每個分組按 column 的 top n 數據
   """
   return df.sort_values(by=column, ascending=False)[:n]

print(df_data.groupby('LeagueIndex').apply(top_n))

運行結果:

                  LeagueIndex   Age  HoursPerWeek  TotalHours       APM
LeagueIndex                                                            
1           2214            1  20.0          12.0       730.0  172.9530
           2246            1  27.0           8.0       250.0  141.6282
           1753            1  20.0          28.0       100.0  139.6362
2           3062            2  20.0           6.0       100.0  179.6250
           3229            2  16.0          24.0       110.0  156.7380
           1520            2  29.0           6.0       250.0  151.6470
3           1557            3  22.0           6.0       200.0  226.6554
           484             3  19.0          42.0       450.0  220.0692
           2883            3  16.0           8.0       800.0  208.9500
4           2688            4  26.0          24.0       990.0  249.0210
           1759            4  16.0           6.0        75.0  229.9122
           2637            4  23.0          24.0       650.0  227.2272
5           3277            5  18.0          16.0       950.0  372.6426
           93              5  17.0          36.0       720.0  335.4990
           202             5  37.0          14.0       800.0  327.7218
6           734             6  16.0          28.0       730.0  389.8314
           2746            6  16.0          28.0      4000.0  350.4114
           1810            6  21.0          14.0       730.0  323.2506
7           3127            7  23.0          42.0      2000.0  298.7952
           104             7  21.0          24.0      1000.0  286.4538
           1654            7  18.0          98.0       700.0  236.0316
8           3393            8   NaN           NaN         NaN  375.8664
           3373            8   NaN           NaN         NaN  364.8504
           3372            8   NaN           NaN         NaN  355.3518
1. 產生層級索引:外層索引是分組名,內層索引是df_obj的行索引

示例代碼:

print(df_data.groupby('LeagueIndex').apply(top_n, n=2, column='Age')) # apply函數接收的參數會傳入自定義的函數中

運行結果:

                  LeagueIndex   Age  HoursPerWeek  TotalHours       APM
LeagueIndex                                                            
1           3146            1  40.0          12.0       150.0   38.5590
           3040            1  39.0          10.0       500.0   29.8764
2           920             2  43.0          10.0       730.0   86.0586
           2437            2  41.0           4.0       200.0   54.2166
3           1258            3  41.0          14.0       800.0   77.6472
           2972            3  40.0          10.0       500.0   60.5970
4           1696            4  44.0           6.0       500.0   89.5266
           1729            4  39.0           8.0       500.0   86.7246
5           202             5  37.0          14.0       800.0  327.7218
           2745            5  37.0          18.0      1000.0  123.4098
6           3069            6  31.0           8.0       800.0  133.1790
           2706            6  31.0           8.0       700.0   66.9918
7           2813            7  26.0          36.0      1300.0  188.5512
           1992            7  26.0          24.0      1000.0  219.6690
8           3340            8   NaN           NaN         NaN  189.7404
           3341            8   NaN           NaN         NaN  287.8128
2. 禁止層級索引, group_keys=False

示例代碼:

print(df_data.groupby('LeagueIndex', group_keys=False).apply(top_n))

運行結果:

      LeagueIndex   Age  HoursPerWeek  TotalHours       APM
2214            1  20.0          12.0       730.0  172.9530
2246            1  27.0           8.0       250.0  141.6282
1753            1  20.0          28.0       100.0  139.6362
3062            2  20.0           6.0       100.0  179.6250
3229            2  16.0          24.0       110.0  156.7380
1520            2  29.0           6.0       250.0  151.6470
1557            3  22.0           6.0       200.0  226.6554
484             3  19.0          42.0       450.0  220.0692
2883            3  16.0           8.0       800.0  208.9500
2688            4  26.0          24.0       990.0  249.0210
1759            4  16.0           6.0        75.0  229.9122
2637            4  23.0          24.0       650.0  227.2272
3277            5  18.0          16.0       950.0  372.6426
93              5  17.0          36.0       720.0  335.4990
202             5  37.0          14.0       800.0  327.7218
734             6  16.0          28.0       730.0  389.8314
2746            6  16.0          28.0      4000.0  350.4114
1810            6  21.0          14.0       730.0  323.2506
3127            7  23.0          42.0      2000.0  298.7952
104             7  21.0          24.0      1000.0  286.4538
1654            7  18.0          98.0       700.0  236.0316
3393            8   NaN           NaN         NaN  375.8664
3373            8   NaN           NaN         NaN  364.8504
3372            8   NaN           NaN         NaN  355.3518

感謝各位的閱讀!關于“Pandas中的分組聚合是什么”這篇文章就分享到這里了,希望以上內容可以對大家有一定的幫助,讓大家可以學到更多知識,如果覺得文章不錯,可以把它分享出去讓更多的人看到吧!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

广汉市| 松溪县| 浦北县| 建宁县| 石屏县| 建德市| 泽库县| 齐齐哈尔市| 恭城| 枣阳市| 高阳县| 滨州市| 长寿区| 盘锦市| 仁化县| 平远县| 阳山县| 聂荣县| 清镇市| 来宾市| 高密市| 潮安县| 靖江市| 永济市| 承德市| 黄大仙区| 阿拉善右旗| 封丘县| 伊金霍洛旗| 卫辉市| 东城区| 黔西县| 阳谷县| 清水县| 建湖县| 呼图壁县| 乐陵市| 永登县| 黄平县| 咸阳市| 太仆寺旗|