您好,登錄后才能下訂單哦!
這篇文章主要介紹了Pytorch中如何測試nn.Dropout,具有一定借鑒價值,感興趣的朋友可以參考下,希望大家閱讀完這篇文章之后大有收獲,下面讓小編帶著大家一起了解一下。
Pytorch的nn.Dropout在每次被調用時dropout掉的參數都不一樣,即使是同一次forward也不同。
如果模型里多次使用的dropout的dropout rate大小相同,用同一個dropout層即可。
import torch
import torch.nn as nn
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.dropout_1 = nn.Dropout(0.5)
self.dropout_2 = nn.Dropout(0.5)
def forward(self, input):
# print(input)
drop_1 = self.dropout_1(input)
print(drop_1)
drop_1 = self.dropout_1(input)
print(drop_1)
drop_2 = self.dropout_2(input)
print(drop_2)
if __name__ == '__main__':
i = torch.rand((5, 5))
m = MyModel()
m.forward(i)
結果如下:
*\python.exe */model.pytensor([[0.0000, 0.0914, 0.0000, 1.4095, 0.0000],[0.0000, 0.0000, 0.1726, 1.3800, 0.0000],[1.7651, 0.0000, 0.0000, 0.9421, 1.5603],[1.0510, 1.7290, 0.0000, 0.0000, 0.8565],[0.0000, 0.0000, 0.0000, 0.0000, 0.0000]])tensor([[0.0000, 0.0000, 0.4722, 1.4095, 0.0000],[0.0416, 0.0000, 0.1726, 1.3800, 1.3193],[0.0000, 0.3401, 0.6550, 0.0000, 0.0000],[1.0510, 1.7290, 1.5515, 0.0000, 0.0000],[0.6388, 0.0000, 0.0000, 1.0122, 0.0000]])tensor([[0.0000, 0.0000, 0.4722, 0.0000, 1.2689],[0.0416, 0.0000, 0.0000, 1.3800, 0.0000],[0.0000, 0.0000, 0.6550, 0.0000, 1.5603],[0.0000, 0.0000, 1.5515, 1.4596, 0.0000],[0.0000, 0.0000, 0.0000, 0.0000, 0.0000]])Process finished with exit code 0
感謝你能夠認真閱讀完這篇文章,希望小編分享的“Pytorch中如何測試nn.Dropout”這篇文章對大家有幫助,同時也希望大家多多支持億速云,關注億速云行業資訊頻道,更多相關知識等著你來學習!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。