您好,登錄后才能下訂單哦!
這篇文章主要講解了“Python數據結構之有哪些經典的排序算法”,文中的講解內容簡單清晰,易于學習與理解,下面請大家跟著小編的思路慢慢深入,一起來研究和學習“Python數據結構之有哪些經典的排序算法”吧!
1、冒泡排序
算法演示
算法步驟
算法實現
2、選擇排序
算法演示
算法步驟
算法實現
3、簡單插入排序
算法演示
算法步驟
算法實現
4、希爾排序
算法演示
算法步驟
算法實現
5、歸并排序
算法演示
算法步驟
算法實現
6、快速排序
算法演示
算法步驟
算法實現
7、堆排序
算法演示
算法步驟
算法實現
8、計數排序
算法演示
算法步驟
算法實現
9、桶排序
算法演示
算法步驟
算法實現
10、基數排序
算法演示
算法步驟
算法實現
——越小的元素會經由交換慢慢“浮”到數列的頂端
比較相鄰的元素。如果第一個比第二個大,就交換它們兩個;
對每一對相鄰元素作同樣的工作,從開始第一對到結尾的最后一對,這樣在最后的元素應該會是最大的數;
針對所有的元素重復以上的步驟,除了最后一個;
重復步驟1~3,直到排序完成。
def bubbleSort(arr): for i in range(1, len(arr)): for j in range(0, len(arr)-i): if arr[j] > arr[j+1]: arr[j], arr[j + 1] = arr[j + 1], arr[j] return arr
—— 最小的出來排第一,第二小的出來排第二…
首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置。
再從剩余未排序元素中繼續尋找最小(大)元素,然后放到已排序序列的末尾。
重復第二步,直到所有元素均排序完畢。
def selectionSort(arr): for i in range(len(arr) - 1): # 記錄最小數的索引 minIndex = i for j in range(i + 1, len(arr)): if arr[j] < arr[minIndex]: minIndex = j # i 不是最小數時,將 i 和最小數進行交換 if i != minIndex: arr[i], arr[minIndex] = arr[minIndex], arr[i] return arr
——通過構建有序序列,對于未排序數據,在已排序序列中從后向前掃描,找到相應位置并插入。
從第一個元素開始,該元素可以認為已經被排序;
取出下一個元素,在已經排序的元素序列中從后向前掃描;
如果該元素(已排序)大于新元素,將該元素移到下一位置;
重復步驟3,直到找到已排序的元素小于或者等于新元素的位置;
將新元素插入到該位置后;重復步驟2~5。
def insertionSort(arr): for i in range(len(arr)): preIndex = i-1 current = arr[i] while preIndex >= 0 and arr[preIndex] > current: arr[preIndex+1] = arr[preIndex] preIndex-=1 arr[preIndex+1] = current return arr
——希爾排序,也稱遞減增量排序算法,是插入排序的一種更高效的改進版本。
選擇一個增量序列 t1,t2,……,tk,其中 ti > tj, tk = 1;
按增量序列個數 k,對序列進行 k 趟排序;
每趟排序,根據對應的增量 ti,將待排序列分割成若干長度為 m 的子序列,分別對各子表進行直接插入排序。僅增量因子為 1 時,整個序列作為一個表來處理,表長度即為整個序列的長度。
def shellSort(arr): import math gap=1 while(gap < len(arr)/3): gap = gap*3+1 while gap > 0: for i in range(gap,len(arr)): temp = arr[i] j = i-gap while j >=0 and arr[j] > temp: arr[j+gap]=arr[j] j-=gap arr[j+gap] = temp gap = math.floor(gap/3) return arr
——建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個非常典型的應用。
申請空間,使其大小為兩個已經排序序列之和,該空間用來存放合并后的序列;
設定兩個指針,最初位置分別為兩個已經排序序列的起始位置;
比較兩個指針所指向的元素,選擇相對小的元素放入到合并空間,并移動指針到下一位置;
重復步驟 3 直到某一指針達到序列尾;
將另一序列剩下的所有元素直接復制到合并序列尾。
def mergeSort(arr): import math if(len(arr)<2): return arr middle = math.floor(len(arr)/2) left, right = arr[0:middle], arr[middle:] return merge(mergeSort(left), mergeSort(right)) def merge(left,right): result = [] while left and right: if left[0] <= right[0]: result.append(left.pop(0)) else: result.append(right.pop(0)); while left: result.append(left.pop(0)) while right: result.append(right.pop(0)); return result
——快速排序使用分治法(Divide and conquer)策略來把一個串行(list)分為兩個子串行(sub-lists)。 快速排序又是一種分而治之思想在排序算法上的典型應用。本質上來看,快速排序應該算是在冒泡排序基礎上的遞歸分治法。
從數列中挑出一個元素,稱為 “基準”(pivot);
重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的后面(相同的數可以到任一邊)。在這個分區退出之后,該基準就處于數列的中間位置。這個稱為分區(partition)操作;
遞歸地(recursive)把小于基準值元素的子數列和大于基準值元素的子數列排序;
def quickSort(arr, left=None, right=None): left = 0 if not isinstance(left,(int, float)) else left right = len(arr)-1 if not isinstance(right,(int, float)) else right if left < right: partitionIndex = partition(arr, left, right) quickSort(arr, left, partitionIndex-1) quickSort(arr, partitionIndex+1, right) return arr def partition(arr, left, right): pivot = left index = pivot+1 i = index while i <= right: if arr[i] < arr[pivot]: swap(arr, i, index) index+=1 i+=1 swap(arr,pivot,index-1) return index-1 def swap(arr, i, j): arr[i], arr[j] = arr[j], arr[i]
——利用堆這種數據結構所設計的一種排序算法
創建一個堆 H[0……n-1];
把堆首(最大值)和堆尾互換;
把堆的尺寸縮小 1,并調用 shift_down(0),目的是把新的數組頂端數據調整到相應位置;
重復步驟 2,直到堆的尺寸為 1。
def buildMaxHeap(arr): import math for i in range(math.floor(len(arr)/2),-1,-1): heapify(arr,i) def heapify(arr, i): left = 2*i+1 right = 2*i+2 largest = i if left < arrLen and arr[left] > arr[largest]: largest = left if right < arrLen and arr[right] > arr[largest]: largest = right if largest != i: swap(arr, i, largest) heapify(arr, largest) def swap(arr, i, j): arr[i], arr[j] = arr[j], arr[i] def heapSort(arr): global arrLen arrLen = len(arr) buildMaxHeap(arr) for i in range(len(arr)-1,0,-1): swap(arr,0,i) arrLen -=1 heapify(arr, 0) return arr
——作為一種線性時間復雜度的排序,計數排序要求輸入的數據必須是有確定范圍的整數。
找出待排序的數組中最大和最小的元素
統計數組中每個值為i的元素出現的次數,存入數組C的第i項
對所有的計數累加(從C中的第一個元素開始,每一項和前一項相加)
反向填充目標數組:將每個元素i放在新數組的第C(i)項,每放一個元素就將C(i)減去1
def countingSort(arr, maxValue): bucketLen = maxValue+1 bucket = [0]*bucketLen sortedIndex =0 arrLen = len(arr) for i in range(arrLen): if not bucket[arr[i]]: bucket[arr[i]]=0 bucket[arr[i]]+=1 for j in range(bucketLen): while bucket[j]>0: arr[sortedIndex] = j sortedIndex+=1 bucket[j]-=1 return arr
——桶排序是計數排序的升級版。它利用了函數的映射關系,高效與否的關鍵就在于這個映射函數的確定。
設置一個定量的數組當作空桶;
遍歷輸入數據,并且把數據一個一個放到對應的桶里去;
對每個不是空的桶進行排序;
從不是空的桶里把排好序的數據拼接起來。
function bucketSort(arr, bucketSize) { if (arr.length === 0) { return arr; } var i; var minValue = arr[0]; var maxValue = arr[0]; for (i = 1; i < arr.length; i++) { if (arr[i] < minValue) { minValue = arr[i]; // 輸入數據的最小值 } else if (arr[i] > maxValue) { maxValue = arr[i]; // 輸入數據的最大值 } } // 桶的初始化 var DEFAULT_BUCKET_SIZE = 5; // 設置桶的默認數量為5 bucketSize = bucketSize || DEFAULT_BUCKET_SIZE; var bucketCount = Math.floor((maxValue - minValue) / bucketSize) + 1; var buckets = new Array(bucketCount); for (i = 0; i < buckets.length; i++) { buckets[i] = []; } // 利用映射函數將數據分配到各個桶中 for (i = 0; i < arr.length; i++) { buckets[Math.floor((arr[i] - minValue) / bucketSize)].push(arr[i]); } arr.length = 0; for (i = 0; i < buckets.length; i++) { insertionSort(buckets[i]); // 對每個桶進行排序,這里使用了插入排序 for (var j = 0; j < buckets[i].length; j++) { arr.push(buckets[i][j]); } } return arr; }
基數排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次類推,直到最高位。有時候有些屬性是有優先級順序的,先按低優先級排序,再按高優先級排序。最后的次序就是高優先級高的在前,高優先級相同的低優先級高的在前。
取得數組中的最大數,并取得位數;
arr為原始數組,從最低位開始取每個位組成radix數組;
對radix進行計數排序(利用計數排序適用于小范圍數的特點);
var counter = []; function radixSort(arr, maxDigit) { var mod = 10; var dev = 1; for (var i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) { for(var j = 0; j < arr.length; j++) { var bucket = parseInt((arr[j] % mod) / dev); if(counter[bucket]==null) { counter[bucket] = []; } counter[bucket].push(arr[j]); } var pos = 0; for(var j = 0; j < counter.length; j++) { var value = null; if(counter[j]!=null) { while ((value = counter[j].shift()) != null) { arr[pos++] = value; } } } } return arr; }
感謝各位的閱讀,以上就是“Python數據結構之有哪些經典的排序算法”的內容了,經過本文的學習后,相信大家對Python數據結構之有哪些經典的排序算法這一問題有了更深刻的體會,具體使用情況還需要大家實踐驗證。這里是億速云,小編將為大家推送更多相關知識點的文章,歡迎關注!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。