91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Python中學習NLP自然語言處理電影影評的操作方法

發布時間:2021-09-24 14:58:04 來源:億速云 閱讀:108 作者:柒染 欄目:開發技術

這期內容當中小編將會給大家帶來有關Python中學習NLP自然語言處理電影影評的操作方法,文章內容豐富且以專業的角度為大家分析和敘述,閱讀完這篇文章希望大家可以有所收獲。

概述

從今天開始我們將開啟一段自然語言處理 (NLP) 的旅程. 自然語言處理可以讓來處理, 理解, 以及運用人類的語言, 實現機器語言和人類語言之間的溝通橋梁.

Python中學習NLP自然語言處理電影影評的操作方法

RNN

RNN (Recurrent Neural Network), 即循環神經網絡. RNN 相較于 CNN, 可以幫助我們更好的處理序列信息, 挖掘前后信息之間的聯系. 對于 NLP 這類的任務, 語料的前后概率有極大的聯系. 比如: “明天天氣真好” 的概率 > “明天天氣籃球”.

Python中學習NLP自然語言處理電影影評的操作方法

權重共享

傳統神經網絡:

Python中學習NLP自然語言處理電影影評的操作方法

RNN:

Python中學習NLP自然語言處理電影影評的操作方法

RNN 的權重共享和 CNN 的權重共享類似, 不同時刻共享一個權重, 大大減少了參數數量.

計算過程

Python中學習NLP自然語言處理電影影評的操作方法

計算狀態 (State)

Python中學習NLP自然語言處理電影影評的操作方法

計算輸出:

Python中學習NLP自然語言處理電影影評的操作方法

LSTM

LSTM (Long Short Term Memory), 即長短期記憶模型. LSTM 是一種特殊的 RNN 模型, 解決了長序列訓練過程中的梯度消失和梯度爆炸的問題. 相較于普通 RNN, LSTM 能夠在更長的序列中有更好的表現. 相比 RNN 只有一個傳遞狀態 ht, LSTM 有兩個傳遞狀態: ct (cell state) 和 ht (hidden state).

Python中學習NLP自然語言處理電影影評的操作方法

階段

LSTM 通過門來控制傳輸狀態。

LSTM 總共分為三個階段:

  • 忘記階段: 對上一個節點傳進來的輸入進行選擇性忘記

  • 選擇記憶階段: 將這個階段的記憶有選擇性的進行記憶. 哪些重要則著重記錄下來, 哪些不重要, 則少記錄一些

  • 輸出階段: 決定哪些將會被當成當前狀態的輸出

代碼

預處理

import pandas as pd
import re
from bs4 import BeautifulSoup
from sklearn.model_selection import train_test_split
import tensorflow as tf
# 停用詞
stop_words = pd.read_csv("data/stopwords.txt", index_col=False, quoting=3, sep="\n", names=["stop_words"])
stop_words = [word.strip() for word in stop_words["stop_words"].values]
# 用pandas讀取訓練數據
def load_data():
    # 語料
    data = pd.read_csv("data/labeledTrainData.tsv", sep="\t", escapechar="\\")
    print(data[:5])
    print("評論數量:", len(data))
    return data
def pre_process(text):
    # 去除網頁鏈接
    text = BeautifulSoup(text, "html.parser").get_text()
    # 去除標點
    text = re.sub("[^a-zA-Z]", " ", text)
    # 分詞
    words = text.lower().split()
    # 去除停用詞
    words = [w for w in words if w not in stop_words]
    return " ".join(words)
def split_data():
    # 讀取文件
    data = pd.read_csv("data/train.csv")
    print(data.head())
    # 實例化
    tokenizer = tf.keras.preprocessing.text.Tokenizer()
    # 擬合
    tokenizer.fit_on_texts(data["review"])
    # 詞袋
    word_index = tokenizer.word_index
    print(word_index)
    print(len(word_index))
    # 轉換成數組
    sequence = tokenizer.texts_to_sequences(data["review"])
    # 填充
    character = tf.keras.preprocessing.sequence.pad_sequences(sequence, maxlen=200)
    # 標簽轉換
    labels = tf.keras.utils.to_categorical(data["sentiment"])
    # 分割數據集
    X_train, X_test, y_train, y_test = train_test_split(character, labels, test_size=0.2,
                                                        random_state=0)
    return X_train, X_test, y_train, y_test
if __name__ == '__main__':
    # #
    # data = load_data()
    # data["review"] = data["review"].apply(pre_process)
    # print(data.head())
    #
    # # 保存
    # data.to_csv("data.csv")
    split_data()

主函數

import tensorflow as tf
from lstm_pre_processing import split_data
def main():
    # 讀取數據
    X_train, X_test, y_train, y_test = split_data()
    print(X_train[:5])
    print(y_train[:5])
    # 超參數
    EMBEDDING_DIM = 200  # embedding 維度
    optimizer = tf.keras.optimizers.RMSprop()  # 優化器
    loss = tf.losses.CategoricalCrossentropy(from_logits=True)  # 損失
    # 模型
    model = tf.keras.Sequential([
        tf.keras.layers.Embedding(73424, EMBEDDING_DIM),
        tf.keras.layers.LSTM(200, dropout=0.2, recurrent_dropout=0.2),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(64, activation="relu"),
        tf.keras.layers.Dense(2, activation="softmax")
    ])
    model.build(input_shape=[None, 20])
    print(model.summary())
    # 組合
    model.compile(optimizer=optimizer, loss=loss, metrics=["accuracy"])
    # 訓練
    model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=2, batch_size=32)
    # 保存模型
    model.save("movie_model.h6")
if __name__ == '__main__':
    # 主函數
    main()

輸出結果:

2021-09-14 22:20:56.974310: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
   Unnamed: 0      id  sentiment                                             review
0           0  5814_8          1  stuff moment mj ve started listening music wat...
1           1  2381_9          1  classic war worlds timothy hines entertaining ...
2           2  7759_3          0  film starts manager nicholas bell investors ro...
3           3  3630_4          0  assumed praised film filmed opera didn read do...
4           4  9495_8          1  superbly trashy wondrously unpretentious explo...
73423
[[15958   623 12368  4459   622   835    30   152  2097  2408 35364 57143
    892  2997   766 42223   967   266 25276   157   108   696  1631   198
   2576  9850  3745    27    52  3789  9503   696   526    52   354   862
    474    38     2   101 11027   696  6456 22390   969  5873  5376  4044
    623  1401  2069   718   618    92    96   138  1345   714    96    18
    123  1770   518  3314   354   983  1888   520    83    73   983     2
     28 28635  1044  2054   401  1071    85  8565  8957  7226   804    46
    224   447  2113  2691  5742    10     5  3217   943  5045   980   373
     28   873   438   389    41    23    19    56   122     9   253 27176
   2149    19    90 57144    53  4874   696  6558   136  2067 10682    48
    518  1482     9  3668  1587  3786     2   110    10   506 25150 20744
    340    33   316    17  4824  3892   978    14 10150  2596   766 42223
   5082  4784   700   198  6276  5254   700   198  2334   696 20879     5
     86    30     2   583  2872 30601    30    86    28    83    73    32
     96    18     2   224   708    30   167     7  3791   216    45   513
      2  2310   513  1860  4536  1925   414  1321   578  7434   851   696
    997  5354 57145   162    30     2    91  1839]
 [    0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     1   357   684
     28  3027 10371  5801 20987 21481 19800     1  3027 10371 21481 19800
   1719   204    49   168   250  7355  1547   374   401  5415    24  1719
     24    49   168  7355  1547  3610 21481 19800   123   204    49   168
   1102  1547   656   213  5432  5183    61     4 66166    20    36    56
      7  5183  2025   116  5031    11    45   782]
 [    0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0  2189     1   586
   2189    15  1855   615   400  5394  3797 23866  2892   481  2892   810
  22020 17820     1   741   231    20   746  2028  1040  6089   816  5555
  41772  1762    26   811   288     8   796    45]
 [    0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0    85   310  1734    78  1906    78  1906  1412  1985
     78  7644  1412   244  9287  7092  6374  2584  6183  3795  3080  1288
   2217  3534  6005  4851  1543   762  1797 26144   699   237  6745     7
   1288  1415  9003  5623   237  1669 17987   874   421   234  1278   347
   9287  1609  7100  1065    75  9800  3344    76  5021    47   380  3015
  14366  6523  1396   851 22330  3465 20861  7106  6374   340    60 19035
   3089  5081     3     7  1695 10735  3582    92  6374   176  8348    60
   1491 11540 28826  1847   464  4099    22  3561    51    22  1538  1027
  38926  2195  1966  3089    33 19894   287   142  6374   184    37  4025
     67   325    37   421   549 21976    28  7744  2466 31533    27  2836
   1339  6374 14805  1670  4666    60    33    12]
 [    0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     1    27    52
   4639     9  5774  1545  8575   855 10463  2688 21019  1542  1701   653
   9765     9   189   706  2212 18342   566   437  2639  4311  4504 26110
    307   496   893   317     1    27    52   587]]
[[0. 1.]
 [0. 1.]
 [0. 1.]
 [1. 0.]
 [0. 1.]]
2021-09-14 22:21:02.212681: I tensorflow/compiler/jit/xla_cpu_device.cc:41] Not creating XLA devices, tf_xla_enable_xla_devices not set
2021-09-14 22:21:02.213245: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcuda.so.1'; dlerror: /usr/lib/x86_64-linux-gnu/libcuda.so.1: file too short; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64:/usr/local/cuda/lib64/:/usr/lib/x86_64-linux-gnu
2021-09-14 22:21:02.213268: W tensorflow/stream_executor/cuda/cuda_driver.cc:326] failed call to cuInit: UNKNOWN ERROR (303)
2021-09-14 22:21:02.213305: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (5aa046a4f47b): /proc/driver/nvidia/version does not exist
2021-09-14 22:21:02.213624: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX512F
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2021-09-14 22:21:02.216309: I tensorflow/compiler/jit/xla_gpu_device.cc:99] Not creating XLA devices, tf_xla_enable_xla_devices not set
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
embedding (Embedding)        (None, None, 200)         14684800  
_________________________________________________________________
lstm (LSTM)                  (None, 200)               320800    
_________________________________________________________________
dropout (Dropout)            (None, 200)               0         
_________________________________________________________________
dense (Dense)                (None, 64)                12864     
_________________________________________________________________
dense_1 (Dense)              (None, 2)                 130       
=================================================================
Total params: 15,018,594
Trainable params: 15,018,594
Non-trainable params: 0
_________________________________________________________________
None
2021-09-14 22:21:02.515404: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:116] None of the MLIR optimization passes are enabled (registered 2)
2021-09-14 22:21:02.547745: I tensorflow/core/platform/profile_utils/cpu_utils.cc:112] CPU Frequency: 2300000000 Hz
Epoch 1/2
313/313 [==============================] - 97s 302ms/step - loss: 0.5112 - accuracy: 0.7510 - val_loss: 0.3607 - val_accuracy: 0.8628
Epoch 2/2
313/313 [==============================] - 94s 300ms/step - loss: 0.2090 - accuracy: 0.9236 - val_loss: 0.3078 - val_accuracy: 0.8790

上述就是小編為大家分享的Python中學習NLP自然語言處理電影影評的操作方法了,如果剛好有類似的疑惑,不妨參照上述分析進行理解。如果想知道更多相關知識,歡迎關注億速云行業資訊頻道。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

岱山县| 兴业县| 吐鲁番市| 凤翔县| 望谟县| 瑞昌市| 古交市| 子洲县| 阿拉善左旗| 芮城县| 淄博市| 阿克陶县| 凤城市| 东乡县| 洱源县| 阿拉善右旗| 喀喇| 凤山市| 广宗县| 崇左市| 罗定市| 长顺县| 和平县| 老河口市| 十堰市| 禹州市| 铜山县| 九龙坡区| 来宾市| 明光市| 阜康市| 绍兴市| 锦州市| 玛曲县| 厦门市| 九龙城区| 五河县| 钟山县| 西城区| 舟山市| 雷波县|