91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

spark 2.2.0 高可用搭建

發布時間:2020-07-04 06:13:06 來源:網絡 閱讀:1328 作者:一語成讖灬 欄目:大數據

一、概述

1.實驗環境基于以前搭建的haoop HA;

2.spark HA所需要的zookeeper環境前文已經配置過,此處不再重復。

3.所需軟件包為:scala-2.12.3.tgz、spark-2.2.0-bin-hadoop2.7.tar

4.主機規劃

bd1

bd2

bd3

Worker

bd4

bd5


Master、Worker

二、配置Scala

1.解壓并拷貝

[root@bd1 ~]# tar -zxf scala-2.12.3.tgz 
[root@bd1 ~]# cp -r scala-2.12.3 /usr/local/

2.配置環境變量

[root@bd1 ~]# vim /etc/profile
export SCALA_HOME=/usr/local/scala
export PATH=:$SCALA_HOME/bin:$PATH
[root@bd1 ~]# source /etc/profile

3.驗證

[root@bd1 ~]# scala -version
Scala code runner version 2.12.3 -- Copyright 2002-2017, LAMP/EPFL and Lightbend, Inc.

三、配置Spark

1.解壓并拷貝

[root@bd1 ~]# tar -zxf spark-2.2.0-bin-hadoop2.7.tgz
[root@bd1 ~]# cp spark-2.2.0-bin-hadoop2.7 /usr/local/spark

2.配置環境變量

[root@bd1 ~]# vim /etc/profile
export SCALA_HOME=/usr/local/scala
export PATH=:$SCALA_HOME/bin:$PATH
[root@bd1 ~]# source /etc/profile

3.修改spark-env.sh    #文件不存在需要拷貝模板

[root@bd1 conf]# vim spark-env.sh
export JAVA_HOME=/usr/local/jdk
export HADOOP_HOME=/usr/local/hadoop
export HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop
export SCALA_HOME=/usr/local/scala
export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=bd4:2181,bd5:2181 -Dspark.deploy.zookeeper.dir=/spark"
export SPARK_WORKER_MEMORY=1g
export SPARK_WORKER_CORES=2
export SPARK_WORKER_INSTANCES=1

4.修改spark-defaults.conf    #文件不存在需要拷貝模板

[root@bd1 conf]# vim spark-defaults.conf
spark.master                     spark://master:7077
spark.eventLog.enabled           true
spark.eventLog.dir               hdfs://master:/user/spark/history
spark.serializer                 org.apache.spark.serializer.KryoSerializer

5.在HDFS文件系統中新建日志文件目錄

hdfs dfs -mkdir -p /user/spark/history
hdfs dfs -chmod 777 /user/spark/history

6.修改slaves

[root@bd1 conf]# vim slaves
bd1
bd2
bd3
bd4
bd5

四、同步到其他主機

1.使用scp同步Scala到bd2-bd5

scp -r /usr/local/scala root@bd2:/usr/local/
scp -r /usr/local/scala root@bd3:/usr/local/
scp -r /usr/local/scala root@bd4:/usr/local/
scp -r /usr/local/scala root@bd5:/usr/local/

2.同步Spark到bd2-bd5

scp -r /usr/local/spark root@bd2:/usr/local/
scp -r /usr/local/spark root@bd3:/usr/local/
scp -r /usr/local/spark root@bd4:/usr/local/
scp -r /usr/local/spark root@bd5:/usr/local/

五、啟動集群并測試HA

1.啟動順序為:zookeeper-->hadoop-->spark

2.啟動spark

bd4:

[root@bd4 sbin]# cd /usr/local/spark/sbin/
[root@bd4 sbin]# ./start-all.sh 
starting org.apache.spark.deploy.master.Master, logging to /usr/local/spark/logs/spark-root-org.apache.spark.deploy.master.Master-1-bd4.out
bd4: starting org.apache.spark.deploy.worker.Worker, logging to /usr/local/spark/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-bd4.out
bd2: starting org.apache.spark.deploy.worker.Worker, logging to /usr/local/spark/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-bd2.out
bd3: starting org.apache.spark.deploy.worker.Worker, logging to /usr/local/spark/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-bd3.out
bd5: starting org.apache.spark.deploy.worker.Worker, logging to /usr/local/spark/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-bd5.out
bd1: starting org.apache.spark.deploy.worker.Worker, logging to /usr/local/spark/logs/spark-root-org.apache.spark.deploy.worker.Worker-1-bd1.out

[root@bd4 sbin]# jps
3153 DataNode
7235 Jps
3046 JournalNode
7017 Master
3290 NodeManager
7116 Worker
2958 QuorumPeerMain

bd5:

[root@bd5 sbin]# ./start-master.sh 
starting org.apache.spark.deploy.master.Master, logging to /usr/local/spark/logs/spark-root-org.apache.spark.deploy.master.Master-1-bd5.out

[root@bd5 sbin]# jps
3584 NodeManager
5602 RunJar
3251 QuorumPeerMain
8564 Master
3447 DataNode
8649 Jps
8474 Worker
3340 JournalNode

spark 2.2.0 高可用搭建

spark 2.2.0 高可用搭建

3.停掉bd4的Master進程

[root@bd4 sbin]# kill -9 7017
[root@bd4 sbin]# jps
3153 DataNode
7282 Jps
3046 JournalNode
3290 NodeManager
7116 Worker
2958 QuorumPeerMain

spark 2.2.0 高可用搭建

spark 2.2.0 高可用搭建

五、總結

一開始時想把Master放到bd1和bd2上,但是啟動Spark后發現兩個節點上都是Standby。然后修改配置文件轉移到bd4和bd5上,才順利運行。換言之Spark HA的Master必須位于Zookeeper集群上才能正常運行,即該節點上要有JournalNode這個進程。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

上栗县| 曲麻莱县| 财经| 中方县| 柳林县| 宁国市| 黄大仙区| 林西县| 永嘉县| 莱西市| 星子县| 安远县| 富阳市| 清涧县| 来安县| 竹北市| 望谟县| 麻城市| 读书| 鹤山市| 弋阳县| 西乡县| 色达县| 靖江市| 陇西县| 丹凤县| 盘山县| 普定县| 长垣县| 泰宁县| 九江县| 恩平市| 惠东县| 依安县| 富裕县| 马关县| 繁昌县| 金堂县| 安阳市| 清水河县| 白沙|