您好,登錄后才能下訂單哦!
小編給大家分享一下Anaconda如何配置各版本Pytorch,相信大部分人都還不怎么了解,因此分享這篇文章給大家參考一下,希望大家閱讀完這篇文章后大有收獲,下面讓我們一起去了解一下吧!
利用 Anaconda 配置 Pytorch 深度學習環境時利用官網鏈接給出的安裝指令安裝會很慢,而且經常報錯,為此整理目前全版本 pytorch 深度學習環境配置指令,以下指令適用 Windows 操作系統,在 Anaconda Prompt 中運行。
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ conda config --set show_channel_urls yes
pytorch,torchvision,python 三者的對應關系來源于 pytorch 官方 github,鏈接:https://github.com/pytorch/vision#installation
創建一個虛擬環境,其中 pt 是自定義虛擬環境名稱,另外根據踩坑經驗 python 3.6.5 版本可以適配所有版本的 pytorch,建議創建環境時 python 解釋器版本選擇 3.6.5 版本。
conda create -n pt python=3.6.5
隨后點擊 y 同意安裝,等待一會進入虛擬環境。
activate pt
conda install pytorch==0.4.1 torchvision==0.2.1 cuda90 # CUDA 9.0 conda install pytorch==0.4.1 torchvision==0.2.1 cuda92 # CUDA 9.2 conda install pytorch==0.4.1 torchvision==0.2.1 cuda80 # CUDA 8.0 conda install pytorch==0.4.1 torchvision==0.2.1 cuda75 # CUDA 7.5 conda install pytorch==0.4.1 torchvision==0.2.1 cpuonly # CPU 版本
conda install pytorch==1.0.0 torchvision==0.2.1 cuda100 # CUDA 10.0 conda install pytorch==1.0.0 torchvision==0.2.1 cuda90 # CUDA 9.0 conda install pytorch==1.0.0 torchvision==0.2.1 cuda80 # CUDA 8.0 conda install pytorch-cpu==1.0.0 torchvision-cpu==0.2.1 cpuonly # CPU 版本
conda install pytorch==1.0.1 torchvision==0.2.2 cudatoolkit=9.0 # CUDA 9.0 conda install pytorch==1.0.1 torchvision==0.2.2 cudatoolkit=10.0 # CUDA 10.0 conda install pytorch-cpu==1.0.1 torchvision-cpu==0.2.2 cpuonly # CPU 版本
conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=9.0 # CUDA 9.0 conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=10.0 # CUDA 10.0 conda install pytorch-cpu==1.1.0 torchvision-cpu==0.3.0 cpuonly # CPU O版本
conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=9.2 # CUDA 9.2 conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 # CUDA 10.0 conda install pytorch==1.2.0 torchvision==0.4.0 cpuonly # CPU 版本
conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=9.2 # CUDA 9.2 conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1 # CUDA 10.1 conda install pytorch==1.4.0 torchvision==0.5.0 cpuonly # CPU 版本
conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=9.2 # CUDA 9.2 conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=10.1 # CUDA 10.1 conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=10.2 # CUDA 10.2 conda install pytorch==1.5.0 torchvision==0.6.0 cpuonly # CPU 版本
conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=9.2 # CUDA 9.2 conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=10.1 # CUDA 10.1 conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=10.2 # CUDA 10.2 conda install pytorch==1.5.1 torchvision==0.6.1 cpuonly # CPU 版本
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=9.2 # CUDA 9.2 conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 # CUDA 10.1 conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 # CUDA 10.2 conda install pytorch==1.6.0 torchvision==0.7.0 cpuonly # CPU 版本
conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=9.2 # CUDA 9.2 conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=10.1 # CUDA 10.1 conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=10.2 # CUDA 10.2 conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=11.0 # CUDA 11.0 conda install pytorch==1.7.0 torchvision==0.8.0 cpuonly # CPU 版本
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=9.2 # CUDA 9.2 conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 # CUDA 10.1 conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.2 # CUDA 10.2 conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=11.0 # CUDA 11.0 conda install pytorch==1.7.1 torchvision==0.8.2 cpuonly # CPU 版本
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=10.2 # CUDA 10.2 conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=11.1 # CUDA 11.1 conda install pytorch==1.8.0 torchvision==0.9.0 cpuonly # CPU 版本
conda install pytorch==1.9.0 torchvision==0.10.0 cudatoolkit=10.2 # CUDA 10.2 conda install pytorch==1.9.0 torchvision==0.10.0 cudatoolkit=11.1 # CUDA 11.1 conda install pytorch==1.9.0 torchvision==0.10.0 cpuonly # CPU 版本
CPU 版本測試:繼續運行 python 進入交互式環境,分別運行 import torch
,import torchvision
不報錯則安裝成功。
GPU 版本測試:繼續運行 python 進入交互式環境,分別運行 import torch
,import torchvision
不報錯, 再運行 print(torch.cuda.is_available())
輸出 Ture 則表示安裝成功。
以上是“Anaconda如何配置各版本Pytorch”這篇文章的所有內容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內容對大家有所幫助,如果還想學習更多知識,歡迎關注億速云行業資訊頻道!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。