您好,登錄后才能下訂單哦!
本篇文章為大家展示了有哪些實用的Python庫,內容簡明扼要并且容易理解,絕對能使你眼前一亮,通過這篇文章的詳細介紹希望你能有所收獲。
Wget
從網絡上提取數據是數據科學家的重要任務之一。Wget 是一個免費的實用程序,可以用于從網絡上下載非交互式的文件。它支持 HTTP、HTTPS 和 FTP 協議,以及通過 HTTP 的代理進行文件檢索。由于它是非交互式的,即使用戶沒有登錄,它也可以在后臺工作。所以下次當你想要下載一個網站或者一個頁面上的所有圖片時,wget 可以幫助你。安裝:
$ pip install wget
例子:
import wget url = 'http://www.futurecrew.com/skaven/song_files/mp3/razorback.mp3' filename = wget.download(url) 100% [................................................] 3841532 / 3841532 filename 'razorback.mp3' ### Pendulum
對于那些在 python 中處理日期時間時會感到沮喪的人來說,Pendulum 很適合你。它是一個簡化日期時間操作的 Python 包。它是 Python 原生類的簡易替代。請參閱文檔深入學習。
安裝:
$ pip install pendulum
例子:
import pendulum dt_toronto = pendulum.datetime(2012, 1, 1, tz='America/Toronto') dt_vancouver = pendulum.datetime(2012, 1, 1, tz='America/Vancouver') print(dt_vancouver.diff(dt_toronto).in_hours()) 3
imbalanced-learn
可以看出,當每個類的樣本數量基本相同時,大多數分類算法的效果是最好的,即需要保持數據平衡。但現實案例中大多是不平衡的數據集,這些數據集對機器學習算法的學習階段和后續預測都有很大影響。幸運的是,這個庫就是用來解決此問題的。它與 scikit-learn 兼容,是 scikit-lear-contrib 項目的一部分。下次當你遇到不平衡的數據集時,請嘗試使用它。
安裝:
pip install -U imbalanced-learn # 或者 conda install -c conda-forge imbalanced-learn
例子:
使用方法和例子請參考文檔。
FlashText
在 NLP 任務中,清理文本數據往往需要替換句子中的關鍵字或從句子中提取關鍵字。通常,這種操作可以使用正則表達式來完成,但是如果要搜索的術語數量達到數千個,這就會變得很麻煩。Python 的 FlashText 模塊是基于 FlashText 算法為這種情況提供了一個合適的替代方案。FlashText 最棒的一點是,不管搜索詞的數量如何,運行時間都是相同的。你可以在這里了解更多內容。
安裝:
$ pip install flashtext
例子:
提取關鍵字
from flashtext import KeywordProcessor keyword_processor = KeywordProcessor() # keyword_processor.add_keyword(<unclean name>, <standardised name>) keyword_processor.add_keyword('Big Apple', 'New York') keyword_processor.add_keyword('Bay Area') keywords_found = keyword_processor.extract_keywords('I love Big Apple and Bay Area.') keywords_found ['New York', 'Bay Area']
替換關鍵字
keyword_processor.add_keyword('New Delhi', 'NCR region') new_sentence = keyword_processor.replace_keywords('I love Big Apple and new delhi.') new_sentence 'I love New York and NCR region.' Fuzzywuzzy
這個庫的名字聽起來很奇怪,但是在字符串匹配方面,fuzzywuzzy 是一個非常有用的庫。可以很方便地實現計算字符串匹配度、令牌匹配度等操作,也可以很方便地匹配保存在不同數據庫中的記錄。
安裝:
$ pip install fuzzywuzzy
例子:
from fuzzywuzzy import fuzz from fuzzywuzzy import process # 簡單匹配度 fuzz.ratio("this is a test", "this is a test!") 97 # 模糊匹配度 fuzz.partial_ratio("this is a test", "this is a test!") 100
更多有趣例子可以在 GitHub 倉庫找到。
PyFlux
時間序列分析是機器學習領域中最常見的問題之一。PyFlux 是 Python 中的一個開源庫,它是為處理時間序列問題而構建的。該庫擁有一系列優秀的現代時間序列模型,包括但不限于 ARIMA、GARCH 和 VAR 模型。簡而言之,PyFlux 為時間序列建模提供了一種概率方法。值得嘗試一下。
安裝
pip install pyflux
例子
詳細用法和例子請參考官方文檔。
Ipyvolume
結果展示也是數據科學中的一個重要方面。能夠將結果進行可視化將具有很大優勢。IPyvolume 是一個可以在 Jupyter notebook 中可視化三維體和圖形(例如三維散點圖等)的 Python 庫,并且只需要少量配置。但它目前還是 1.0 之前的版本階段。用一個比較恰當的比喻來解釋就是:IPyvolume 的 volshow 對于三維數組就像 matplotlib 的 imshow 對于二維數組一樣好用。可以在這里獲取更多。
使用 pip
$ pip install ipyvolume
使用 Conda/Anaconda
$ conda install -c conda-forge ipyvolume
例子
動畫
體繪制
Dash
Dash 是一個高效的用于構建 web 應用程序的 Python 框架。它是在 Flask、Plotly.js 和 React.js 基礎上設計而成的,綁定了很多比如下拉框、滑動條和圖表的現代 UI 元素,你可以直接使用 Python 代碼來寫相關分析,而無需再使用 javascript。Dash 非常適合構建數據可視化應用程序。然后,這些應用程序可以在 web 瀏覽器中呈現。用戶指南可以在這里獲取。
安裝
pip install dash==0.29.0 # 核心 dash 后端 pip install dash-html-components==0.13.2 # HTML 組件 pip install dash-core-components==0.36.0 # 增強組件 pip install dash-table==3.1.3 # 交互式 DataTable 組件(最新!)
例子下面的例子展示了一個具有下拉功能的高度交互式圖表。當用戶在下拉菜單中選擇一個值時,應用程序代碼將動態地將數據從 Google Finance 導出到 panda DataFrame。
Gym
OpenAI 的 Gym 是一款用于增強學習算法的開發和比較工具包。它兼容任何數值計算庫,如 TensorFlow 或 Theano。Gym 庫是測試問題集合的必備工具,這個集合也稱為環境 —— 你可以用它來開發你的強化學習算法。這些環境有一個共享接口,允許你進行通用算法的編寫。
安裝
pip install gym
例子這個例子會運行CartPole-v0環境中的一個實例,它的時間步數為 1000,每一步都會渲染整個場景。
上述內容就是有哪些實用的Python庫,你們學到知識或技能了嗎?如果還想學到更多技能或者豐富自己的知識儲備,歡迎關注億速云行業資訊頻道。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。