您好,登錄后才能下訂單哦!
今天就跟大家聊聊有關大數據中消息隊列常見的使用場景有哪些,可能很多人都不太了解,為了讓大家更加了解,小編給大家總結了以下內容,希望大家根據這篇文章可以有所收獲。
一、簡介
消息隊列中間件是分布式系統中重要的組件,主要解決應用耦合,異步消息,流量削鋒等問題。實現高性能、高可用、可伸縮和最終一致性架構。使用較多的消息隊列有ActiveMQ、RabbitMQ、ZeroMQ、Kafka、MetaMQ、RocketMQ。
二、消息隊列應用場景
以下介紹消息隊列在實際應用中常用的使用場景:異步處理,應用解耦,流量削鋒和消息通訊四個場景。
1、異步處理
場景說明:用戶注冊后,需要發注冊郵件和注冊短信。傳統的做法有兩種:串行的方式和并行方式。
串行方式:將注冊信息寫入數據庫成功后,發送注冊郵件,再發送注冊短信。以上三個任務全部完成后,返回給客戶。
并行方式:將注冊信息寫入數據庫成功后,發送注冊郵件的同時,發送注冊短信。以上三個任務完成后,返回給客戶端。與串行的差別是,并行的方式可以提高處理的時間。
假設三個業務節點每個使用50毫秒鐘,不考慮網絡等其他開銷,則串行方式的時間是150毫秒,并行的時間可能是100毫秒。
因為CPU在單位時間內處理的請求數是一定的,假設CPU1秒內吞吐量是100次。則串行方式1秒內CPU可處理的請求量是7次(1000/150)。并行方式處理的請求量是10次(1000/100)。
小結:如以上案例描述,傳統的方式系統的性能(并發量,吞吐量,響應時間)會有瓶頸。如何解決這個問題呢?
引入消息隊列,將不是必須的業務邏輯,異步處理。改造后的架構如下:
按照以上約定,用戶的響應時間相當于是注冊信息寫入數據庫的時間,也就是50毫秒。注冊郵件,發送短信寫入消息隊列后,直接返回,因此寫入消息隊列的速度很快,基本可以忽略,因此用戶的響應時間可能是50毫秒。因此架構改變后,系統的吞吐量提高到每秒20QPS。比串行提高了3倍,比并行提高了兩倍!
2、應用解耦
場景說明:用戶下單后,訂單系統需要通知庫存系統。傳統的做法是,訂單系統調用庫存系統的接口。如下圖:
傳統模式的缺點:
假如庫存系統無法訪問,則訂單減庫存將失敗,從而導致訂單失敗,訂單系統與庫存系統耦合。
如何解決以上問題呢?引入應用消息隊列后的方案,如下圖:
訂單系統:用戶下單后,訂單系統完成持久化處理,將消息寫入消息隊列,返回用戶訂單下單成功
庫存系統:訂閱下單的消息,采用拉/推的方式,獲取下單信息,庫存系統根據下單信息,進行庫存操作
假如:在下單時庫存系統不能正常使用。也不影響正常下單,因為下單后,訂單系統寫入消息隊列就不再關心其他的后續操作了。實現訂單系統與庫存系統的應用解耦。
3、流量削鋒
流量削鋒也是消息隊列中的常用場景,一般在秒殺或團搶活動中使用廣泛!
應用場景:秒殺活動,一般會因為流量過大,導致流量暴增,應用掛掉。為解決這個問題,一般需要在應用前端加入消息隊列。
可以控制活動的人數,可以緩解短時間內高流量壓垮應用。
用戶的請求,服務器接收后,首先寫入消息隊列。假如消息隊列長度超過最大數量,則直接拋棄用戶請求或跳轉到錯誤頁面。
秒殺業務根據消息隊列中的請求信息,再做后續處理。
4、日志處理
日志處理是指將消息隊列用在日志處理中,比如Kafka的應用,解決大量日志傳輸的問題。架構簡化如下:
日志采集客戶端,負責日志數據采集,定時寫受寫入Kafka隊列;Kafka消息隊列,負責日志數據的接收,存儲和轉發;日志處理應用:訂閱并消費kafka隊列中的日志數據。
以下是新浪kafka日志處理應用案例:
Kafka:接收用戶日志的消息隊列;
Logstash:做日志解析,統一成JSON輸出給Elasticsearch;
Elasticsearch:實時日志分析服務的核心技術,一個schemaless,實時的數據存儲服務,通過index組織數據,兼具強大的搜索和統計功能;
Kibana:基于Elasticsearch的數據可視化組件,超強的數據可視化能力是眾多公司選擇ELK stack的重要原因。
5、消息通訊
消息通訊是指,消息隊列一般都內置了高效的通信機制,因此也可以用在純的消息通訊。比如實現點對點消息隊列,或者聊天室等。
點對點通訊:
客戶端A和客戶端B使用同一隊列,進行消息通訊。
聊天室通訊:
客戶端A,客戶端B,客戶端N訂閱同一主題,進行消息發布和接收。實現類似聊天室效果。
以上實際是消息隊列的兩種消息模式,點對點或發布訂閱模式。模型為示意圖,供參考。
消息隊列采用高可用,可持久化的消息中間件。比如Active MQ,Rabbit MQ,Rocket Mq。
應用將主干邏輯處理完成后,寫入消息隊列。消息發送是否成功可以開啟消息的確認模式。(消息隊列返回消息接收成功狀態后,應用再返回,這樣保障消息的完整性);
擴展流程(發短信,配送處理)訂閱隊列消息。采用推或拉的方式獲取消息并處理;
消息將應用解耦的同時,帶來了數據一致性問題,可以采用最終一致性方式解決。比如主數據寫入數據庫,擴展應用根據消息隊列,并結合數據庫方式實現基于消息隊列的后續處理;
分為Zookeeper注冊中心,日志收集客戶端,Kafka集群和Storm集群(OtherApp)四部分組成。
Zookeeper注冊中心,提出負載均衡和地址查找服務;
日志收集客戶端,用于采集應用系統的日志,并將數據推送到kafka隊列;
Kafka集群:接收,路由,存儲,轉發等消息處理;
Storm集群:與OtherApp處于同一級別,采用拉的方式消費隊列中的數據;
看完上述內容,你們對大數據中消息隊列常見的使用場景有哪些有進一步的了解嗎?如果還想了解更多知識或者相關內容,請關注億速云行業資訊頻道,感謝大家的支持。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。